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TRANSLATOR!'S NOTE
A comprehensive account is given of the Raman effect of isolated systems,
atoms, and molecules, The first three chapters introduce the subject ade-

quately and reduce to 2 minimum the necessity for a prior knowledge of radia-

tion theory,
Conventional physical notations have been followed, The footnotes, along

with the references, have been placed at the end of each chapter because they

are often lengthy in the original German edition,

I wish to thank Esther D, Fultz for her cooperation in editing the trans-

lation,

ANN WERBIN

Lawrence Radiation Laboratory
University of California

Livermore, California

March 22, 1959
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THE RAYLEIGH SCATTERING AND RAMAN IZ)F}?‘I‘ZC’I‘1
G. Placzek, Kopenhagen

PART I
GENERAL THEORY

Chapter 1, Introduction

When radiation passes through matter, aside from that reflected and
refracted, weak randomly scattered radiation will appear, The blue of the
sky repreésents such scatiered xl'a.diation. It manifests itself in the laboratory
by the resonance-fluorescence of dilute gases and by the blue opalescence of
gases near their critical points (or near the critical mix point of partially
soluble liquids), Under ordinary conditions the scattering effects are readi-
ly detected in pure liquids but the purification of the liquids and the thorough
removal of dust particles require considerable care. In 1869 Lallemand dis-
covered the scattering of liquids and concluded that this property is character-
istic of the liquid, 2 However, his studies did not achieve the necessary re-
cognition since the liquids he used were not trusted to be free of dust. 3 in
1913, Martin rediscovered the scattering in liquids. 4 At that time, his re-
search was extended to investigation of the blue color of the sky and of the
critical opalescence, The studies in both fields proceeded independently for
many years,

Originally, the color of the sky was attributed to particles suspended in
air, This view which originated with Leonardo da‘\/’inci,5 together with the
assumptions about the nature of the particles (dust, water droplets, ice
crystals), form the basis of the investigations by Newton, Clansius, Brucke,
and Tyndall and of the early studies by L~rd Rayleigh. In 1873 MaxwelJ.6
concluded from Rayleigh's work that the molecules themselves constitute
the scattering particles and believed that the scattering radiation may facili-
tate the identification of molecules. Twenty-six years later, Lord Rayleigh
revived these ideas., With the aid of these assumptions and by using an esti-
mated value for the transparency of air, he demonstrated that the Loschmidt
number agreed to within an order of magnitude with values known at that time,
He also attempted to explain the polarization of the radiation from the sky in
terms of the anisotropy of the gas molecules, Later experiments on atmos-
pheric extinctions substantiated Lord Rayleigh's suppositions and were used

to re-evaluate the Loschmidt number.
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The clectron theories of dispersion of Lorentz and Planck lead to the
same relations between refractive index and scattering radiation as
Rayleigh's theory; in addition, the dependence of the refractive index on the
molecular eigenfrequencies was properly expressed, This made it possible
to recognize the principles underlying resonance-fluorescence which was dis-
covered by Wood8 in 1905, In 1910 a series of important questions was
settled in a classic paper by Lorentz, 9 At the same time, Smoluchowski, 10
starting from apparently different premises, presented an explanation of
the critical opalescence. He considered density fluctuations, rather than
molecules, as the sc}attering centers, inv'oking the increasiﬁg fluctuations
near the critical point to explain the opalescence, Einstein™ treated this
problem quantitatively, while others generalized and proved it experimentally,
Today we know that critical opalescence may be interpreted by a generaliza-
tion of Rayleigh's theory, The difference between '"molecular theory' and
"fluctuation theory'" is a formal one only,

In 1915, Cab;nnetal2 demonstrated scattering of light by gases, Soon
thereafter, Smoluchowski13 and Strutt14 {the present Lord Rayleigh) re-
ported analogous results, and, in addition, Strutt was able to account for
the partial polarization of the scattered radiation., The systematic experi-
mental and theoretical investigations in this field had their inception with
thege finds,

At the time when Maxwell concluded that the radiation from the sky was of
molecular origin, Lommel assumed the anharmonic oscillator as a model
for the scattering molecule.15 Starting with the elastic light theory, he de-
veloped the complete mathematical theory of scattered radiation. Aside
from the scattering of the unshifted frequency (Lommel called it "isochromatic
fluorescence! and associated it with the observationas made by Lallemand),
summation and difference tones occur between the incident frequency and
the eigenfrequency, Lommel discussed these terms with respect to reson-
ance and different incident frequencies,

In the later Lorentz electron theory, which was applied to the dis-
persion problems, these terms do not appear, They vanish because of the
assumption of quasi-elastic forces, For this reason the scattering theory
no longer received any attention, except for a few general remarks on optic
vibrations by Lord Rayleigh, In 1923, Smekal, using light quantum consider-

ations, discussed the effect of a light quantum of any frequency on atomic
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transitions conserving the energy by means of light quanta, 16 IZ the final
state‘is above the initial state, the frequency of the scattered radiation is
lower (v - AE/h) than that of the incident radiation, and higher (v + AE/h)
in the reverse case,
et “Stimulated by Smekalis studies, Kramers and Heisenberg showed
classically the development of the modified scatteré\d radiation, 17 By trans-
ferring the“corresponding classical wave theory, they derived the quantum
theoretical scattering formula., The importance of this investigation far
surpasses the particular problem dealt with, since it became‘the starting
point of the modern quantum rnelcha.nics. The results remainspéompletely
valid in the modern theory. In his radiation theory, Dirac gave the most
conclusive derivation,
In 1906, the resonance phenomenon of the modified scattered radiation
of iodine vapor (incident frequency identical with absorption fréquency)
was observed by Wood. 19 Partially analogous observations were performed
by Fuchtbauer and Wood, while studying the optical excitation of mercury
vapor. These observations were interpreted differently before the advent
of the modern quantum theory. Hence, the observations of the modified
scattering for any given incident frequency, carried out by Raman in the
course of systematic investigations of light scattering of liquids, were of
great importance, 20 At practically the same time, Landsberg alleld Maundelstam21

made similar observations by studying the light scattering of crystals,

More than 500 studies deal with this phenomenon,
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REFERENCES AND FOOTNOTES

l. The following discussion deals with the quantum theory of light scatter-

ing and its application to isolated systems such as atoms and molecules,
The problems of molecular interaction associated with the application of the
theory to aggregate systems, i,e,, gases, liquids, and crystals, are not
presented, Even within the narrow scope of the present discussion no
effort for completeness has been made, Questions that are already treated
in detail in available texts (see Cabannes, La diffusion moléculaire de la
lumiére; Kohlrausch, Der Smekal-Raman Effekt) are discussed only when
the new approach resulted in significant progress, Experimental techniques
are described in the above texts,
The author wishes to thank R. Baer, A. Langseth, J. Rud Nielsen and

', Rasetti for the spectra reproduced in Figs. 5, 14, and 17,

2. A, Lallemand, Compt. rend, é_‘)-, 190, 283, 918, 1294 (1869); J. phys,
et radium 5, 329 (1876).

3. Lallemand's contention that the scattering of a series of saturated hydro-
carbons increases with increasing refractive index indicates that he observed
2 genuine molecular scattering.

W. H. Martin, Trans, Roy, Soc. Can, 7, 219 (1913).

5. Leonardo da Vinci, Trattato della Pittura,
6. Lord Rayleigh, Phil, Mag. 47, 375 (1899). Coll. papers IV, p., 397,
7. Lord Rayleigh, ihid, ‘

co

. R. W. Wood, Phil. Mag. 10, 513 (1905).

9. H. A. Lorentz, Proc. Amsterdam 13, 42 (1910).

10, M. V. Smoluchowski, Ann., Physik 25, 208 (1908),

11. A. Einstein, Ann, Physik 33, 1275 (1910).

12, J. Cabannes, Compt, rend. 160, 62 (1915).

13. M. V., Smoluchowski, Bull, Ac. Soc, Cracovie {1916), 218,

14. R. J, Strutt, Proc. Roy. Soc. (London) 94, 453, 95, 155 (1918).
15, E. Lommel, Poggendorffs Ann, 143, 26 (1871), Wiedemanns Ann, 3, 25l
(1878},

16. A, Smekal, Naturwiss, 11, 873 (1923).

17. H. A. Kramers and W, Heisenberg, Z. Phys, 31, 681 (1925).
18. P. A, M. Dirac, Proc, Roy, Soc. {(London) _l_l_t_l_, 710 (1927),

19. W. R. Wood, Phys. Z. 9, 450 (1908)

20, C. V., Raman, Indian J, Phys. 2, 387 (1928); C. V. Raman and
U. S. Krishnan, Nature 121, 501 (1928).



-9 UCRL Trans No. 526 (L)

21. G. ‘Landsberg and L. Mandelstam, Naturwiss. 16, 57, 772 (1928).

22, Ca{)annes reported (Compt. rend, 186, 1201 (1928); Y. Rocard, ibid. 1107)
some carlier experiments involving optical vibrations of gases in connection
with Raman's communication. However, these experiments yielded negative
resultd Because of insufficient intensity.

23, The present remarks do not warrant a complete literature survey; they
merely emphasize the highlights in the development. A summary of numer-
ous theoretical studies can be found in the dissertation by Rocard (Ann, phys. .

10, 116 (1928).
The bibliography given by Cabannes in La Diffusion Moléculaire de la

Lumiére, Paris, (1929) and by Kohlrausch in Der Smekal-Raman Effekt,

Berlin, (1931) should be consulted,
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Chapter 2. The Quantum Theory of Scattering Phkenomena, Corpuecular and
and Wave Concepts,

In the preceding chapter, the corpuscular and wave concepts were used
to describe the same phenomenon; the clarification of the relationship be-
tween the two constitutes one of the main achlievements of the modern quantum
theory. According to Bohr and Heisenberg the description of each phenomenon
may be given in terms of the corpuscular or wave concept.1 Each of these
concepts of space-time description~-initially mutually exclusive~--is usgeful
only to a limited extent, the applicability of either being determined by the
uncertainty principle. On the other hand, a complete description of the pro-~
cesses iz possible by means of either concept, but when this is done each
will lose part of its descriptive nature, With regard to the theory of radia-
tion this implies the following: ‘

1. Wave Concept; The field quantities satisfying Maxwell's equations
are ''probability amplitudes,' the square of whose absolute quantity gives
the probability of finding a light quantum in a given time-space region,

2. Corpuscular Concept: Light quanta obey the Bose-Einsatein, rather
than the Boltzmann, statistics, Knowledge of the presence of a particle
(light quantum) in a cell of phase space increases the probability of finding
a second one there, This situation, which can hardly be illustrated classi-
cally, gives rise to induced emission,

These relations are expressed formally by Dirac, who proved that a
system of particlee obeying the Bose-Einstein statistics is equivalent to a
wave field, 2

The scattering phenomena to be discussed presently can be understood
by the use of classical wave theory, However, quantum mechanics must be
invoked in order to correlate the scattering of the atoms and molecules
with their structure and energy levels, 3 The progress in the field of
scattering phenomena achieved by the quantum theory consists mainly--
aside from clarifying the main principles discussed above--in the basic
change in our concept of the structure of the scattering atoms and mole=~

cules, rather than in any altered description of the scattering process,

....... - P e S s i et e ———— YT 3 e e et AR T T 0
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REFERENCES AND FOOTNOTES
1. N. Bohr, Atomtheoric and Naturbeschreibung, Berlin (1931);

W, Helsenberg, '""Die physikalishen Prinzipien der Quantumtheorie,! Leipzig
(1930).

2. P. A. M. Dirac, Quantum Mechanics, Oxford (1930).

3, For the special case of quantum transitions between vibrational states
of heavy particles (nuclei) having constant electronic energy, the classical
treatment (wave theory foi“ radiation, and corpuscular theory for molecules)
may be applied to another problem., The quantum theoretical transition
frequencies of an oecillator are directly related to the classical eigenfre-
quencies and often, the uncertainty relations are of less importance because
of the large mass of the nuclel, Many results concerning the molecular
structure can be deduced clasaically, such as the selection rules, for
Instance, Quantum theory alters drastically the temperature function,

The advantage of the quantum-mechanical method lies in its increased
simplicity and in the fact that the significance of the results and the range

of thelr validity may now be recognized, See Chapters 14 and 25, Phenomena
which are greatly affected by the electronic configuration elude the classical
approach., The polarization of the scattered rays, as far as they are not
determined by the selection rules, can be treated quantum mechanically

only, !

S — —
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Chapter 3, Correspondence Thedry of the Scattering P)ua-nomenon1

The correspondence principle leads to a simple dervivation of the scatter-
ing formula, The radiation of a material system is given classically by the
time-dependence of an electric moment, The variation of the efgen.function
resulting from an incident wave is determined, and the matrix elements of
the electric moments are formed, Then using the correspondence principle
the expression for the radiation is calculated. The theoretical justification
for the application of quantum theory to matter and classical theory to radia-
tion has been derived by Dirac and Heisenberg, 2,3

We now proceed with the calculations, given a system of particles and

the time-dependent Schrddinger equation:4
(my +1/1) 8 /0 )0 (q,1) = 0
X 0 *
(H, -(1/i)9 /8 t)lIJ( Y (aq,t) = 0. (3.1)

The energy operator H is given by the classical Hamiltonian when the momenta
are replaced by -{1/i)8 /0 q3 q refers to the coordinates. The general

solution is .
iy

— el T
¢

% = T agh, expl- 1B, oA, (3. 2)

where a, is an arbitrary constant; the Lpr are no longer time-dependent but
represent the solution of the time-~-independent Schrddinger equation by sub-
stituting Eq. (3. 2) into (3.1); Er denotes the energy of state r, If the sys-

tem is in state k, the solution is
W (0) _ y, exp(~ iE, t/h) (3. 2a)
k k k : )
Let a light wave fall into thic system such that its wavelength is large
compared with the dimensions of the system and that its frequency is differ-
ent from the eigenirequencies of the system., > The electronic-vector is

*
E=A exp (2rivt) + A exp(- 2wivt), (3. 3)

. * . . .
A is a complex vector and A ‘its complex conjugate, Equation (3, 3) includes
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any polarization condition; for linearly polarized light;

" A=A =0 A
y 2 X

§1

(1/2) E exp (i0)

and . E =E =0 E E cos (2mwvt - ¢).
. Yy VA x
.‘T\\-\v:r'l: MR

F“H;r circularly polarized light:

‘ v ’ - : 4
=i = . i = l .,,:.——4'.(:5 -1
A 1Ay_ (1/2)E exp (i4), A =0 ) A <
. voAy N
¢ ;
E_=E cos (2mwvt - $), Ey = Esin (2mt - ¢), E_ =0,

X

A
The system is perturbed by the external field E; the additional energy
His - (ME), where M = Z ejrj(ej is the charge, r:]. the position vector of the
j-th particle). The Schrti]dinger equation of the perturbed system is now

(Hy - (ME) +14/1) 8 /o ) (q,t) = 0 |

(HO*'- (ME) -(B/i) 8 /o t){:* (9, t) = 0. (3. 4)

Let us consgider the case where the unperturbed system ;exists in

state k, and choose as solution of Eq. (3.4)

(PQ: @k(O) + @k(l). {3.5)

Then, from Egs. {3.4) and (3.1),6

(1, + 12 /1o 30 = (Eang,

, s %
" -0 /i 03t = (mag 0 (3. 6)

As solution of Eq. (3.6) we use

IR

1 + N - e
\IJK( ) = \Lk exp (- i/h (Ek + hv)t) + lij exp (- 1/'rx(Ek - hv)t)
' (3.7)
which, aleng with Eqs. {3.2a) and (3. 3), yields Eq. (3.6). Egquating the
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coefficients of equal time-dependence gives

Hyty ' - (B + vy = (AM)y s

L]

Holy ™ = (B - by " = (A M)y

(3. 8)
q b3 b3 s
P R RGN N TS L O Vo TR

Hy (4, ) = (B - by ) = (A

The right side of the equations may be expanded in terms of the unper-

turbed eigenfunctions l};r:
— v
(AM)L’Jk - % (AL"](I.‘>4}I‘

(avyp = 5 (AM 9, where (3.9)
r

1
S

Mkr - ‘qur* Mq’k dm

Let us consider now the time-~independent Schrbdinger equation
Hy =E "y *
o'r yVre Hobr = B b

Then from Eqs. (3.8) and (3. 9) the following expressions for q;ki are ob-

tained in terms of the unperturbed eigenfunctions:

e
+ _ E (AMkr) -_ S (A Mkr)
he =5 ll'r b = v by
: E -~ E =-hv E -E + hv
iy k r k
(A"M_y) (AM, )
4 % ik * - < kr *
whH" =2 v, W =Y " (3.92)
E - E ~-hv r E - L + hy
r k r k
The solution of Eq. (3.6) according to (3,7), is then given by
e
(AMkr) (A Mkr)

1 " ,
g"Jk( = l/h,f‘z: Yy

-

lw—‘tr)"‘——-j

exp (— ifa (B, + hv)t) +
Lvl‘k -V - VI‘I(

exp (- i/ (E, - hv)t)
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(1)* o (A*Mkr) : L AM
3, =1/h PR e exp(i/B(E, + hv)t) + T exp(i/R(E, - hv)t)

i rle (3. 10)

Equation (3.10) represents the perturbation of the eigenfunction by the
external field.

We now formulate the moment of the perturbed state k, since we are
interested in the emitted radiation from a classical dipole with the same

time~dependence,

§ e+ I Mg O e g Mhar = vy

(AM, )M . : :
+1/n Z [ k_ - Mkr - vm exp(~ 2mivt) (3. 11)
o T v;’k Vrk *
*w Y)M M, (A"M_.) o
+ 1/h Z l Kz > rk + kr — vrk exp(2wivt).
vrl Vrk

The {irat part of (3.11) is time-independent and not associated with radia-
tion; it represents the permanent dipole moment of the state k. The second

part has the form

(1) _ . 0 .
Mkk = Ckk exp(- 2mwivt) + Ckk exp (2wivt), where

C - 1/‘1 Z (AMkr)Mrk + Ml(r(AMrk)
kk ! - Vo~V v + v *

rk

(3.12)

This second part, Eq. {3.12), is real and its time-dependence is the same as
that of the incident radiation, It represents the scattered radiation of the

same frequency, and is referred to as the '"coherent radiation."

The classical radiation associated with the moment (3,12) is:8
T2 4 4
2M 64w v 2
b= g = = ‘ Cla| (3.13)
3c 3c

Equation (3.13) represents the intensity scattered per second.
Next we wish to know the radiation corresponding to the transition from

state k to state n, Neglecting the squared expressions in E,
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S‘(Lpn(o) + ‘.Tén(l))* M@,k(o) + qfk(l))d'r = Mkn exp(- Z'rrivknt)

(AM, M M, _(AM_ )
+ l/h Z ‘V kr rn + Mkr rn -l exp (-— Zﬂi(vkn i V)t) (3. 14—)

- vrk-v Vrn+v J

-

% E
+ l/h 5— (A Mkr)Mrn + Mkr(A Mrn>'
ot v + v v

exp(- 2wi(v - v)t).
r rk rn kn

v
The individual members of (3.14) are complex, in contrast to those in (3,11);
in order to relate them to the classical radiation of a real dipole, an addi-
tional expression is necessary. This may be formulated according to Klein
in the following rnanner:9 the radlation corresponding to the component
Mgm exp (- Zvivmt) of the electric moment with initial state ¢ is zero when

Y om < 0; when v'_m >0 it is equal to the classically radiated intensity

agsociated with the quantity:

M}Zm exp (- Z'rrivfmt) + M)Zm* exp (Znivﬂmt).

When these conditions are applied to Eq, (3.14), it may be seen that the
first term represents the spontaneous emisgion Vi, 28 sociated with the
transition k - n, while the second term corresponds to a scattering of fre-
quency (an + v); this occurs only when {vkn + v) >0 and En < Ek + Qv The
energy of the final state En may be larger or smaller than that of the initial
state Ek" In the first case, the scattered light ig of larger wavelength, and
in the second case, it i of shorter wavelength (Stokes and anti-Stokes scat-
tering)., When k and n represent different quantum levels but Ek = En (de -
generacy), the emitted scattering is unshifted, differing from that given by
{3.11) and (3.13) in its coherence properties and polarization. It will be dis-
cussed further in the ensuing chapters,

The third term in (3.14) leads to radiation when v. =~ v >0, and

lkn
E < E, - hv;jtherefore, the initial state must be an excited level. It des-

cribes an induced emission of two quanta (an - v) and v to a lower level n,
In addition, there exists a spontaneous transition probability not covered
by the present theory, The significance of thege processes will be clarified

in subsequent discussions,
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If we now consider the evaluation of the intensity with the aid of Klein's

procedure, then, by limiting ourselves to the scattering radiation (gecond

term):
_647\"
Lkn_ 3CJ (v T Vi 1Ckn » Where
(3.15)

; 7
— ];(AMkr>Mrn Mkr(AMrﬂ) ;
kn
T

— 1 K
_1/n2_ S 4 ~ +VJ.

rk rn

For k = n, Eq. {3.15) transforms into (3,13).
The intensity of radiation of a particular polarization and direction of
propagation, rather than that of the total scattered radiation, is expressed

by the classical formula for the intensity of the dipole radiation

_)ZTF I( (3.16)

L (@)= 26v" | (Mq>| 2 ega)®

where g is a unit vector in the direction of polarization along which the
scattering is observed, r the distance between the scattering system and

a distant observer, and A' the emitted wavelength (\! = ﬁ%ﬁ)'

In the case of degeneracy, the total radiation intensity of a given fre-
quency is obtained by summming over all degenerate initial and final states,
Equations (3.12), (3.13), and (3.15) have been derived by Kramers and
Heisenberg before the advent of quantum mechanics.lo The quantum -
mechanical derivation was given by Born, Heisenberg, and Jordan, 1 while
the present derivationlZ is based upon a perturbation calculation of the
Schrddinger treatment.

A discussion on the scattering formula will be presented in Chapter 5,
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A

REFERENCES AND FOOTNOTES

1. In this and subseguent chapters only a slight knowledge of quantum mech-
anlceg is assumed, The reader not interested in the derivation of the scatter -
ing formula can omit it since the resgults are recounted in Chapter 5,

2. P, A, M. Dirac, Quantum Mechanics, Oxford (1930},

3. W. Heisenberg, Ann, Physik 9, 338 (1931),

4, Refer to the article by V. Laue and to the introduction of the article

Lo

by Kronig.
5. This assumption, which we retain throughout the present article, re-
gtricts the validity of the results to visible and ultraviolet radiation;
x-ray scattering will not be discussed here.
6. On the right side of Eg. (3.6) the quantity (EM)qu(l) is omitted as being
too small and of second-oxder, )*

{3.11); they are proportional to the square of the incident field strength.

7. The terms which correspond to the integral Supk(z Mupk(l)d'r are omitted in

8. See texts on Electrodynamics or Sommerfeld, Atomic Structure and

Spectral Lines, Vol. I, appendix,
9. O. Klein, Z. Physik 41, 407 {1927).
10, Kramers and Heisenberg, l.c,

1l. M. Dorn, W. Heisenberg, P. Joxrdan, Z. Physik 35, 557 (1925),

12, O. Klein, l.c.

13. E. Schrddinger, Ann, Physik 81, 109 (1926). In this paper Schrdinger
obtained a different result from the above by starting with his original inter -
pretation of the eigenfunction as a charge density, Here, displaced scatter-
(0) + l.Lln(O)), that is,

when both levels k and n are excited, However, by following the above treat-

ing occurs only when the unperturbed state is taken as (ka

ment, it is seen that scattering occurs as soon as state k is excited regard-
less of the population of the final state n, Experiments confirm the latter

theory, wiich is essentially a statistical one,
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Chapter 4. Diracis Scattering Theoryl
The theory of scattered radiation outlined above suffices for most cases, .

There, however, the relation between electric moment and scattering was
merely hypothesized, but in Dirac's method this hypothesis is replaced by a
quanturn theoretical treatment of the radiation field, Previously we treated
the system of particles (molecules) in an external field; now the molecule

and the radiation field should form a single sys’r.emz whose Hamiltonian is
made up of the energy of the molecule I—Im, of the radiation Hs’ and of the

interaction energy H', i.e.,

H=H_ +H +H.
A 8

Vi

The unperturbed system consists of

where the interaction energy is considered to be the perturbation,
To determine HS, we imagine the radiation to be enclosed in 2 cavity
with wallg having specular reflecting surfaces, so that the radiation field may

. . . - . . 2
be thought of as comprised of standing waves, i,e., eigenvibrations;

E = Z E =\/$ Z ¢ g (t) sin T,

&5

2Ty (4.1)
- = & e
I, = e (1&Sr)+68,

where e ig a unit vector in the direction of the field; %y its arnplitud_?;

Vs the freguency; ks’ the propagation vector; r, the position vector; ¢, the
velocity of light; 68, an arbitrary phase; and V, the volume of the cavity,
By comparcison with the classical expression for the energy density, one

obtains for the energy
_ Z . 2 2 2 2]
H <122 (4, %+ an®y_2q ], (4. 2)
Equation {4, 2) represents the energy of a system of oscillators with frequency

v, and mass k., For each plane wave (eigenvibration) there exisis such an
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oscillator, For a large cavity, the number of eigenvibrations of a particular
polarization dirxecticn j, within the frequency range v and v + dv and solid

angle dwm, i.e.,
2
an, = v2/c vavde, (4. 3)

which, when integrating over the coordinates and polarization direction,

yvields

az = ﬁg;i v, | (4. 32)
' |
As in the previous chapter, the intéraction energy between radiation
énd molecule is again given by
H! = - {(EM). (4. 4)
The Schrddinger equation of the unperturbed system {molecule plus radiation)

is

The eigenvalues are the sum of the energies of the molecule and cavity while

the eigenfunctions are products,

Eg=E_+ %_ (ng+ 1/2)hv_
‘ (4. 5)

The state of the radiation field is determined by the quantum numbers n o,
which indicate the numbexr of light quanta that occupy the individual eigen-

vibrations, The elgenfunctions u  are harmonic oscillator functions,
n
S
Let us consider, next, any given state of the radiation field, SO, and
state k of the molecule, As long as the energy is the sum of that of the
molecule and the cavity, the system remains in its given state, When H!

is included, however, transitions to other states S, n talke place, If we

develop the eigenfunction in terms of the unperturbed system
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o= g; B (E) o exp {- lEnst/'ﬁ},

(for t = 0, a . =1; for all others, a = 0), then the perturbation theory gives,

kS~
in {irst-ordexr approximation,

- .'
kS 1 - exp <2m\vnk + VSSO)t>

nS nS : Z(Vnk + VSSD)
(4.6a)
. kS, _ ( * .
(Hg % = Wog H ks, 4™

and, in second-order approximation,

B kS rS? . .
@ . > (H.gr °(H)y g L= exp(ui(v,  + vgei)t)
a’nS - {
. 2 X
rS] Z(Vrk + VS'SO) "(vnr 4 VSS')
] I - exp<2'nr1(vm( + vssm}’c>'](4.6b)
2(voic ¥ vgs, ) ]

Upon substituting the value for Hf given by Eqs. {4.4) and {4.1), the first-
order approximation yields processes for which the atom changes its quantum
staté and for which the population number of a cavity oscillator changes by

+1 or -1. These processes correspond to emission and absorption of a light
gquantum, To obtain the scattering radiation, we must consider the second-
order approximation. Since X', according to Egs. (4.4) and (4.1), is linear
in 4y and since the selection rh}les for the harmonic oscillator are AnS =+ 1,
one can sce by inspection of the form of Eq. (4.6Db) that only those transitions
are posceible for which two cavity oscillators change by + 1, while the mole-~
cule may change, or remain in the same state. If wec consider, first, the
state of the cavity, then we can distinguish four cases., The indices a and B

denote both of the eigenvibrations that undergo a change in state,

L n! =n +1, nl =n_+1 hv and hv_ appear (double~emission)

a QO [j a 16 Bushutvaladau oo
2, nél =n - L, né = nﬁ -1 hva and hv‘3 disappear (double-absorption)
3. “21 = f“a -1, nf = ni3 +1 (hva, },wﬁ) disappears and

4, n! =n +1, n‘ﬁ =xn, -1 (bv,, hva) appears (scattering).

p



-~22- UCRL Trans No. 526 {L)

The first two procesgses occur in the correspondence theory, They are
not treated further here as they were studied in detail by M. GYpperi-Mayer,

If we limit ourselves to the third proce“‘ {the fourth does not yield any
new data), we obtain the quantity l Di We shall employ Eq. {4.6), along
with the matrix elements shown in (4. 4), (4.1), and (4.5) and the following

values for the coordinate matrices of the oscillator:

(n_ + 1) (n, + 1hv
= exp(Zvlv t); =il exp(2wiv t)
qn ,n +1 \ Z q_n ,n +1 \ 8
s'"s s 8 2
(‘;Sh n hv_
qn‘,n a- 1/-—“2—-— exp(—-vast); G n -1} -~ exp (- vast).
s''s v 8mov, s’ s 2
l anS(Z) ! 2 gives the probability of finding, at time t, the molecule in state k
and the cavity in state S (nl, Ny e s om, - oo n(3 +1..,. nj), when at
- y X : : D)
= 0 they were at n and SO (nz, n]s. N VR n[3 e . e nj), respectively,
> >
2 sin~ wlv + v, -v
{ (2Y1 2 _ 64w ) . 2 .2 | aﬁlz len a
e g ] = e na(nﬁ F l)uav(3 sin” I" sin I‘B Iscn

(vk tv, - vﬂ)

n

. (4. 7)

kn

" —Tte Mk e M (e Mkr)(e- M n) ]
s, =1/h>r_ v B 2 x |

-V + v }
v b{ Ven ' }

rk

To obtain the probability of the scattering of an incident spectral line
of frequency Vi Q. (4 7) was_summed over aU final states S and over all
eigenvibrations o that occur in the incident radlatlon.

Let us carry through the first summation, replacing it by integration
over dw and emitted frequencies dv. When we consider the number of vibra-
tions per solid angle, the frequency range as given by Eq. (4. 3), and the
density p (v, w')dv'dw! of the radiation of a given polan?atlonA du(::ctlon

and frequency existing in the cavity, where P v, whdulde! = n hv /V,

then we have

2 ~ 3
| (2Y12 _ 64n L2 .2 g v hy!
g | 2hs po= o n v, sin I‘a sin FB EjT (pj'(v yw') + Cj’ )
2 4
{g oajiyz S g rvy s vt
I "kn ! Z vode
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For Sknap' vﬁ is replaced by the continuous frequency v', and the quantity e
by the unit vector ek'_j" which assumes the direction of the electric vector

of the scattered wave, This is now a continuous function of the solid angle,
is perpendicular to the direction of propagation k' and is fixed by the
a, kiji
n .
£

. C , .2 2
time intervals, the {actor sin w(vkn tv,o- vit/ (v Yin + Vo vhi” has a sharp

+ v ). Therefore, only frequencies in the immediate
a X .

ekljl

state of polarization j*(j' =1, 2). We indicate this by S For large.

maximum at v! =

(an
vicinity of the quantity v! contribute appreciably to the value of the integral,

The remaining terms we can consider as constant over v!, thereby giving

the expression \

€0~ sin. Tr(vkn v, v )

. ot
- O (vkn 4 VotV )

The limits of integration are not essential; they may extend from - to +oo,

because of the sharp maximum. The quantity sin” I is evaluated over all

cigenvibrations, Since the phases §_  contained in I’ (see Eq. (4.1)) are in-

== | p p
dependent, sin 1"B =1/2 and '
4 37 .
: (2)| 2 32ut E‘ , hvi® | 1. a,k'jt]2
Z 2as T sin” I, i jrlvieel) 7 = | Skn | el

If we integrate Eqg. (4.8) over the eigenvibrations represented in the incident

frequency v, then

Av, Aw n _hy_,
P:(pr)dvdw = 2 G{h a ,

’ a v :

and finaily, e
] —
N g Kb 2 |
Wkn(u Zg SS P (v, ‘*’) + P_)l vl ! {bcn ddedoJ"J!

e ' (4. 9)

, gives the probability per unit time for the transition of the molecule
from state k to state n under the influence of the radiation, and for a quan-
tum hv of undetermined direction and polarization to be scattered, i.e.,

hv = hvt = hiv + 2 n). This probability is increased, as shown in Eq. (4. 9),
<

when radiation of {requency (v + v, ) already exists (induced emission). We

kn
will now discuss two special cases of Eq. (4.9).
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First, we assume that o (v, w') = 0 and that the molecule is affected by

a plane monochromatic wave of the form (3. 3). Then,

S Sij(V,w)dvdw ::T"" -|A|2 ,

23is A'rr
J

and Eq. (4,9) becomes

l elj? )
W, {ysv v )= 16’7 v “ken gl/h2 Z [‘(eOM }{ k:]'Mr“'
kn*7? kn he 3 _
“rk
+(e1{!j'| M, egM, )
v + v
rn

| . (4. 92)

Vector e, is a unit vector in the direction of the incident electric vector,
Figure 1l
The integral may be written ag follows:
S 2 v;‘ doot,
3
where V i8 a vector, X we choose both polarization componente so that )1
iz in the plane formed by k and V and ek,2 is perpendicular to it, then
05 ot =20 § ] z
\pa ](ek,j,V){ do! = 21 So [(CMV)[ 8in @dg = 2 S IV( sin gdg = 3T [v}
J
a
2

6v\v-‘-v}\ 3 IA‘Z'

5he” h

T l.(e()Mkr)l\Arn + NJ}CI'(teOMI'I\)
F v

v -V v +
L Tk rn

(4. 10)

The scattering intensity is

L = ROV + v, W, . (4.10a)

2

dw!,
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Expression {4.10a), however, represents the intensity emitted by a classical

dipolé of moment Ckn exp (- 27i(v + vkn)t> + C:: exp <2w1(v vy )t), where

— [[{AM, M M, (&M )

- 1/h L ‘ kr’"rn + kr rn .
... r ‘L Vrk -V Vrn + v

This i3 in agreement with the result given by the correspondence theory

(Eqs. {(3.12) and (3,15)).

One can sce from Eq. (4.9a) that the directional distribution of the radia-
tion is the same as that of the classical dipole (Eq. (3.16)). The result ob-
tained by the correspondence theory, according to which the calculated trans-
itions occur only when v' = (v + an) >0, follows as a conseguence of the
positive oscillator frequency, v',

As a second application of Eq. (4.9), we consider the case where p (v, w)
“and p .,(v‘,m’) are different from zero but independent of J,w and j!', w', re-
spt.cuvely (spatially isotropic radlatlon) Then, i

R I ]
i

o{v) = Z S pj(v,w) dw = 87rpj(v, w),
o{vly = 8'rrpj’(v‘,w‘).

p(v) is to differ from zero within a short intervalliv and _gp(v)dv = p(v)dv.

The integration over dw, dw! yields

3
W (v = pv | 2+ (v " 3 (Mo,
‘ ¢ 1 (4.11)

}7 x)kr\Mx‘)rn + (Mx‘)kr(Mx)rn [2

stn( 1()’1 l/h Z Z

1 V. -V v + v
rk rn
This can also be rewritten as follows:
- 1y _«'J \ -

V‘/kn(V.V‘) = P(VI)AV‘\Ckn + Dknp(v')). (4.11.0.)
C, Q13 .

) 1 52 -zl.-’;}:}},l;»_—--rm . (43 llb)
Dkn €

‘The scattering probability consists of two parts. One is proportional to the
radiation density of the incident frequency, and the other is proportional to .

the product of the radiation density of the incident and emitted frequencies,
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The quantities Ckn and Dkn correspond to the Einstein coefficients A

and Bkn for spontaneous and induced emission and their relations are the

same (see Eq. (4.11b}). The form of Eq. (4.1ll2) is important for the dis-

kn

cussion of thermal equilibrium, It was originally deduced by Pauli, from
equilibrium considerations for free electrons,” r)Zn the present derivation,
the form of the equation is already apparent in the initial expression (4. 7),
where the scattering probability is proportional to the product na(nﬁ + 1),
This result, basgsed on the oscillator matrices, can algso be derived from the
Bose-Einstein statistics,

Equation (4.1la) suggests that the scattering phenomenon consists of an
independent sequence of absorption and emission processes, 7":E\'}—Iowever,
this is not correct, as wag shown by Placzek on the basgis of equilibrium

8, 9,10

considerations, and by Weiskopf, by means of Dirac's theory,
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Chapter 5, The General Scattering Equation
On the basls of the results of the two preceding chapters, we shall now
deduce the salient properties of scattered radiation.

{a) Coheretice Properties, The terms represented in Eqs. (3,12) and

{3.15) differ tasically in their coherence properties, We musat remember
that 411_, belonging to a definite state r {solution of the time-independent
Schrédinger equatlon), is associated with an arbitrary, undetermined phase
factor exp {iér). {1f \pr satisfies the Schrbdinger equation, then Lpr exp (i&r)
does also,) The phase factor of M‘kr is, therefore, exp i(()k - 6).-)’ and the
perturkbed moment M (l)has, according to Ea. {3.14), the phase factor

kn
exp i(&k - 6n). According to Eq. {3.11), the phase factor will disappear for

Let us examine the radiation scattered from various scattering centers,
Then, for k = n, interference will occur and the total intensity will depend
upon the orientation of the scattering centere, Therefore, we call this
scattering, Eq. (3.12), "coherent.”" For k # n, interference cannot occur
because the phase {actor varies arbitrarily for different scattering centers,
The intensities are additive, and the total intensity will be independent of

the orientation of the scattering centers, but, ceterie paribus, proportional

to the numher of centers per unit volume, It should be mentioned that the
“unshifted {Raylieigh) zcattering of degenerate states consiste of a coherent.

and an incoherent part, The latter corresponds to transitions between the

<

ariocus degenerate states, Only the firgt part {coherent) contributes to the

o

ispersgion, it depends upon the interference of radiation from the individual

‘gcatiering centers,

{b) The Scattering Tensor and the Static Field, According to Eqs, (3. 3),

(3.12) and (3.15), there is a tensor relation between the complex amplitudes
A of the incideni radiation and the induced moment Ckn. Let p and ¢ denote

the cartesian coordinates x, y, z. Then,

; = {
,\Cp>kn 56-‘ ‘Cpo)knAo” (5.1)
! (M), AM ) (M) AM )
(c ) =l/h S c'kr “p'rn N 0 kr* " "g'rn . (5. 2)
lg)(}' kn R
by v -V v + v
rk rn -

The guantity {c represents a complex and unsymmetric tensor, A dis-
. .

G)kn
¥
cusgion of the properties of the scaitered radiation must necessarily involve

this tensor.,
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« {M ) (M) (M ), (M)
AN 'k rk kr o'rk .
e = | s a 5. 22)
i T L Vrk -V vrk + v

and, accoxrding to Eq. (3.12),

P

1 . . e .
(Mo)iqk( ) = Z [(CpO‘)kkAO' exp{+ 2wivt) + (CpO')kkAO' exp(2wivt)l . (5.3)
1 g

A

D4 B3 b bl
: [ = {M = T rizabilit e ,
Since (MG}kr \I\LO')rk, (cpo_)kk (Co‘p)kk' The polarizability tensor becomes

symmetric for real values of (c O_) which occurs, as may be seen from
P

kk’

(5, 2a) for the static case {v = 0). In addition, for real values of {c 0‘)’<k’
o] h
[y

according to Xqg. (3. 3),

r (1‘) — 7 - [ 22
(I\Ap)kk - T (CpO')kk EO'. (5. 3a)

)

is called "the polarizability o o of the state k."
~p

"he 1 quantity (¢
The rcal qua v | po‘}kk

The polarizability is, therefore, a symmetric teasor, pid (c remains

pO‘)kk
real for v # 0, then the relation (5. 3a) applies to a frequency~dependent
polarizability., This is true whenever the energy operator H is real since
then the cigenfunction and the matrix element of the electric moment can be
written in real form. The energy operator is real in the absence of ex-
ternal rnagnetlc fields and upon neglect of spins,

Moxcaver, it can be shown that (c is also real for a complex energy

p()')kk
operator, provided the given state 15 not degenerate, Ior degenerate states
and for a complex energy operator, this holds only for the average value, de-
Co c oy 3

{ined by (5. 2b).

“or the {shifted and nonshifted) incoherent scattered radiation, the scat-

e

tering tensor remains unsynmfnetric,4 as may be seen from XEg, (5.1}, When
v = 0, the scattering formula gives the effect of an external electric field

on the spontancous transition probability Ik — n. Since different selection
vules apply for scaitering and spontaneous emission, forbidden lines may
then appear whose intensitlies are given by Eq. (301), with v = 0 {see

Chaptex 13).

(¢} The Scattering Tensor and the Effective Cross Sectlion. To obtain

the relation between the scattering tensor and the scattering intensity, one

can express the quantity A in terms of the incident intenslty IO:
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/72wl | 2
o =le/am |a] %

From 2qs, (5,1) and {3.16), one obtains

4
Br | 2
I = = ] e 1. 5.4
'kn(q) )\;71_-;2 l ; (Cpo)anp o 0 ( )

For the case that ornly the ¢ component of the incident light differs from

zero and that the scattering is observed along the direction of polarization,

Oo»

(5.4a)

When Eq, (3.15) ig combined with this, the total energy scattered per

unit time becomes

(5.5)
7.5 ‘
2
Qn 7 ”—.:ILT Z ’ Z (Cpo)kneo °
NG p 4]
The quantity Q,lrn has the dimensions of an area (IO = incident intensity =

energy per unit time and unit area); we call it '"the effective cross section

‘r

or light, " or 'the scattering cross section associated with the transition

-

Xk -~ n." A completely absorbing area with the same cross section, per-

- pendicular to the direction of the incident ray, would absorb the same
arnount of energy--apart from reflections.

As may be seen from (5. 5), the scattering cross gection depends on

the polavization of the incident light. If it contains the ¢ _component only,

{5. 5) becomes
T 5 -
2 7 Y 2
“kn ™ NS o l (Cpc)kné * - (5.52)
St

YFor the degencrate case, the scattering cross section associated with the

trangition k = n ig

0 =1/ z\a o]

gt
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The sum extendn over all degenerate initial states s and final states s'; 2
denotes the statistical weight of the initial state,

If onc averages the Intensities over all directions of propagation and
polarization of the incident light (it is always assumed to be a plane-wave in
a given direction of propagation), or, which is equivalent, over 2il orienta-
tions of the scailtering aystems, assuming a fixed direction and polarization

of the incident light, then (5, 5) becomes:

75 - -
— 2N TS 2 »
g =2t ys ) ) e ol (5. 5¢)
ke 330% 5 ol pCkn
This average quantity differs from the effective cross section for isotropic
. . iso . ;
incident light, an , which 1s
. 75 ¢— '
iso _ 2 = 2
o L2 Y ) [ hn | (5. 5d)
kn 3>\,4 = po'kn

4

Q"% = 3 Qe o (5.6)

ng the definition of (5. 5W), the averaging shown in (5, 5¢c) is unnecesgsary for
a random syotem since no preferred orientation is specified.] The effective
cross section for unidirectional irradiation is independent of the state of
polarization of the incident wave, and is 1/3 the value of the cross section
for isotropic radiation.

(d) Frequency Dependence., The frequency dependence of the shifted
4

and ur:.shifted scattering is defermined by two factors: 1. by (v + an)
and vl‘, respectively; in the correspondence theory, this factor arises in
the emission of radiation from the transifion of the induced moment., 2. by
the denominator in Eqs, (3.12) and (5.2). Three characteristic cases of the
scattered intensity must be distinguished:

1. The incident frequency, v; is small compared with the transition
freguencies occurring in the scattering formula, If the frequency depend-
¢nce in the dénominator is neglected, the intensity is proportional to

4
{v + vim) and v4, respectively,
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2. The incident frequency is close to an absorption band V. 5° that
the effect of a single term predominates, The scattering intensity will vary
4 2 4 2
. & oo ali} € Pt
nn oy /syrk ~ v} and as {v + an) /(vrk - v)" for the unshifted and the shifted
radiation, regpectively. The same holds for the unshiflted frequency when
) ic an emission frequency. Then resonance

r <k, where v  {v -v
? Tk

rk ~ kr
occurs because of the second term in {5.22). For the shifted scattering,

q. {5.2), resonance occurs when, in the second texm, r <n, i,e,, when
the incident frequency ig close to an emission frequency, Vo of the final
gtate, At the resonance frequency itgself, the scattering becomes infinite as
indicated by {5.2) and {5. 2a). In this case, these expressions no longer hold
ag damping effects were neglected in their derivations, but it has definitely
been established that the intensity reaches a maximum in the vicinity of an
absorption band. An extension of these equations to the resonance case will
be discussed in Chapter 7.

3. The inclident frequency is large compared with the transition fre-
quencies occurring in the scattering formula: the intensity of the coherent
scattering will he independent of the freéquency and the quantities {c ) for

ar
0 # o will vanish., The intensity of the shifted scattering, as well as the in-
ccherent part of the unshifted scattering, aporoaches zero.

This may be proved in the following manner. Accovding to Eqs, {5.2)

and (5. 2a), we may write

lim 2
12 4 2

Yy ~ D g(cpo}k.l‘() ;-TZ'V g Vr ‘ p ‘{T‘ l »

lim

oo | 2. 1 N [ . }
v © ;<Cpc'\”»—’:§ h 3 /T' Mcr)‘ (M )rk (Mp)kr(Ma)rk

p it o ' N2
+v [(Mo.)kr(lvip)rk - (Mp)kr(MO')I‘k.lﬁ s (5- 7)

lim

ol lz _ 1 ,
v e gl = lg— Ve M M) (M) )

V(2
syl (M) vy, ()]
L o'kr p'rn kr' o'rn g y

{5. 8)
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where ¢ and P, represent, respeciively, the coordinate and momentum of
- .
the 6 degree of freedom) p_ is xeplaced by 4A/i 6 /6 qye Then, we set
[¥] 7 v

Lt

kr . , o ke A
P,L_; & LWL}LV?—‘&QEB N (5° 9)
}Q v o kei2 _ h
i L =TT e
Z’~ T a l 8?(’2')‘.1.
N _kr  rn kr rn _
2__ Vrkqs Gyt A vrnqs' qg =0, ) {5.10)

If wo put M = Z—- e.r,, the last two sums vanlish and the flrst one will be
J
diffevent from zero, Therefore,

2
Hm T e, 2
\
A ve) ](C ,)kk(2=l/v4r2 (——w&i——- . (5.11)
PP T M

The facior ’.v,} in the dempmuinator cancels because the same texrim occurs in
the facteor relatlng the transition moment to the radiation, The physical
aignificance of these results will be dealt with in Chapter 10,

In the istermediate region the frequency dependence is more complex,
it becomes o function of the transition frequencies and of the magnitude of

the transiition amplitudes M1 o M IEach special case can be discussed
<

rk®
in the lght of Egs. (5.2a). Closely related to the frequency dependence is
the bchavior of the intensities of the Stokes and anti-Stokes lines, Ilcn/In""

I\
Sce Chaptervs 8 and 25,

(¢} The Intermediate States., According to (5. 2) and (5. 2a), the intenelty

and polavization of the scattered radiation are determined by the transition

frequencics (absorption and emission) v . and the transition amplitudes M

kK kkr
and Mrn" The irensition probabilities for spontancous emission {or absorp-
tlon) are glven by the squares of IMkri and { Mrn . It is important that

the scattering formula contain the transition amplitudes rather than the
transition probabilities. Thereby, terms that belong to different intermedi-
ate states r can reinforce, weaken, or cancel each other (interference of the

probabilities}. Some examples will be cited later.
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Since the quantities M Mrn in {5, 2) occur as products, only those

kx’

states contribute to the sum over r for which the transition probabilities

from r to k and n are different from zero, that is, the states must combine

with the initial as well as with final states., It is immaterial whether or not

the intermediate state r can be reached energetically from the initial state

by absorption of the incident frequency hv, The only condition that the inci-

dent frequency must fulfill is that stated in Chapter 3: hv >E_ - E,, which
n k

is always fulfilled in the case of anti-Stokes scattoring. Tor Stekes scatter -

‘ the energy of the incident light quanta must be sufficient to reach the

ng,

final state, as shown in Fig, 2, Similarly, state r may be energetically

a.bove(*), belOW([‘), Jor between(B) the initial and final states.
ke rl
e kAR tize

hy nsi.f_e:-‘::(_—:_,, w=r: II}Z

l l‘ X
!
1
i
!

3

Figure 2
Intermediate state for the transition k - n

It is difficult to understand why the scattering of a system that is in
state k is affected by "unoccupied' states r, It zhould bhe remembered that
"the system is in state k' refers to the unperturbed system, while its re-
actions towards external perturbations {in the present case, the incident
light) must be determined quantum mechanically by specifying the eigenvalues
and eigenfunctions of all states,

(f} Selection Rules. According to the preceding analysis two states k

and n combine in the Raman effect when there is a state that can combine with
k and n in absorption or emission, This is the so-~called "third common

level rule, The quantity M which determines the spontaneous transition

kn'
probability hetween the two states, does not appear in the scattering formula,
There is no correlation between the intensities and selection rules of a

spontaneously emitted {(or absorbed) line and those of a Raman line,

‘
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If the selection rules for spontaneous emission are known, by applying
‘he "third common level rule, " the selection rules for the Raman effect can
e deduced paviially. One cannot derive the complete set of selection rules,
since the existence of @ common level is a2 necessary but not sufficient cond -
ition for a transition to be permitted, As was mentioned eaxlier, the various
terms in the sum over r may cancel out resulting in zero. intensity, Due to
the frequency factor in the denominator, this can occur only when the same
frequency belongs to several transitions, that is, when a degeneracy existe,

There is a simple method which permits the derivation of all the selec ~
tion rules, Xorbidden transitions are usually predicated upon the symretry
properties of the system. They give rise to the fact that the Hamiltonian is
invariant under certaln coordinate transformations, the so~called symmetry
operations (e.g., reflection, rotation, etc.). ! Therefore, the transforma-
tion properties of the scattering formula must be investigated., The char-
acteristic quantity (c )1 given in (5. 2) transforms like the matrix element

.Oo.. b
a tensor component Sy ¢ G,
of 50 P ¢S \ln G\pk T

This is proved in the following way: For the scattering amplitude kn

(Eg, (3.15}), it follows from Eqs, (3.14) and (3.7) that

~ % 4 -
CIR A R TR R (R VL

P )kn

According to (3.8), the quantities defined in (3, 7) and (3. 9a) transform as

follows:

Ps

Lizk' as (AM)dy, and

'3 b4

iPn as (AM)QJT1 .

f

Il 3;11 A d
as\\u Mp( M)lllk‘,. an

p Ien n

b3
c ) g 1 A M o7
( as Mp( MM

Op en
(AUM) transforms as the g components of a vector, and M (AO_M) as the pro-
duct of two vector components, i.e., as a tensor component, The notation,

(

CpO’)kn‘ iniroduced at the beginning has thereby been justified,
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I the given system possesses any symmetry, the ferma separate into
different types. They differ from one another by the transformations of the
symmetry operations for the eigenfunction, When a center of symmetry
exists, there will be even and odd terms, Ior an inversgion, the even
functions remaln invariant, while the odd ones change in sign. The matrix

clement ({ = §u_;“*f\¢kd78 can be different from zero only when, for a

,\_)kn_ :
given symmetry overations, the quantity dgnmf)\q;k remains Invarlant, © Since
the classes of the eigenfunctions and the transformation rules are well-
known for all the possible symmetries, 10 the selection rules for spontaneous
emission {(dipole radiation) can be determined immediately, provided f is
replaced by a vector, the electric moment. The selection rules for the
Raman effect can be obtained upon replacing the vector by a tensor, This
rule has the advantage in that the selections rules are obtained by exzamining
only the properties of the inltial and final states, The intermediate states
need not be considered,

As an example, we select a system with a center of symmetry, Upon
Inversion, all vector components change sign., Therefore, for a transition
to occur in spontaneous emission, LllkL!Jn* must also change its sign, Lven
with odd, or odd with even, terms will combine, This rule is known in
atomic spectra {the nucleus forms the center of symmetry) as Laport's
rula, For the Raman effect, it is necessary to consider a tensor, Since
a tensor itsclf possesses a center of symmetry, inversions leave its compon-
ents invariant and q;kan* must retain its sign., This accounts for the fact
that in the Raman effect even terms combine with even, and odd with odd,
and that a centrosymmetric system cannot have the same transitions in the
absorption spectrum as in the Raman effect. This is the so~called ''mutual
exclusion rule:" Transitions which are permitted in absorption are forbidden
in the Raman effect, and Y_Eff_ versa, Ior 2ll practical purposes, it is
essential to investigate whether there 1s real or accidental degeneracy be-
tween the even and odd terms. If degeneracy does exist, there will be ab-
sorption, and Raman bands will be present which possess the same, or
almost the same, frequencles, but which are associated with different trans-
itions., This kind of degeneracy cannot arise from the symmetry, but rather,
{rom the dynamics of the system as can easily be verified., TFor instance, a
purely Coulombic force field {H atom) can cause such a degeneracy., A

series of important applications of the mutual exclusion rule will be cited

later.
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So that the remaining selectlon rules may be deduced, it is expedient to
peparatc the scattering tensor into an isotropic, a symmeiric, and an anti-

symmetric part;

, 0. o I3 a
A = g :
p(quﬂ "\C 66‘ - C'OG b Cgo_ )kn (5. 12)
b
G. . . v_k-% V., A
(), =13 (e +¢ gz)n = 1/3B ) —ik ra £ (M) ()
- - vy r {v_, =Wv__ +v)io
rk YVirn L
5 - 0 0
( po )’m / (Cp(‘)’ O’p)lm (e )anO’
Vv + v
k rn 0
:1/2}1}‘ - [(M) (M s (M) (M) ] -e?)
B (vrk h v)(vrn + V) olkr T p A p kr™gtrn |
a ,_
A SR NS (5.13)
Zv + v,
= x"&& Z : [(MO‘)PI'(M )rn - (M )"r(MG)r ] °
T (v, - V){v__ + v} N P g n
rk rn

The isctropic part iz 2 scalar quantity, which remains invariant under all

.
symmeiry operaticns. q%fupk musgt likewise remain invariant, but this is
possible merely for terms of the same species, The sum of the diagonal
elementa of a tensor iz called its 'trace.! (co‘,kn of the scattering is called
"the trace geattering, ' for which the selection rule permits the combination
of terras of the same species only,

The second parxt represents a symmetric tensor with zero trace., The
matrix elements of such a quantity determine the quadrupole radiation. i
Hence, the selection rules for this part are identical with those of the quad-
rupole radiation, and is referred to as ''the quadrupole scattering. it

The third part represents an antisymmetric, or axial, vector. It gives
rise to scattering that is analogous to that of a magnetic dipole. We designate
this part as Ythe magnetic dipole scattering,'" The selection rules are the
same a2 those for the spontaneous magnetic dipole radiation of an atom or
molecule, provided the selection rules are determined by the symmetry,
rather than by the accldental magnetic properties of the axial vec:tor.,13
There 18 a difference, however, in that the dlagonal elements of the matrix
{not of the tenvﬂorl) do not correspond to radiation, since the quantum state | -
is unchangyed. They repregent the permanent magnetic moment of the pa.rti--\.I
cular level, and, in the present case, refer to the coherent scattering k =n,
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As may be seen from (5. l\JZ), the frequency dependence of the trace and
juadrupole scattering is the same, For small {requenciesn, that of the mag-
netic dipole scatiering, however, is different; it drops off faster because of
the factor (2v + Vl{n) In the numerator. The relative frecuency denendence
of the three quantities is determined by the cuantities of the individual transi-
tions r -k, r - n inside the square brackets of {5, l\é), Slnce thig is differ-
ent for CO, cs, and ca, the behavior of these quantities depends appreciably
1

on the frequency,

Finally, the scattering intensity is given by

8 a 2
kn + (CpO' )kn * (Cpc— )kn

l(cpo)kngz - léc’p(co) !

indicating that the amplitudes rather than the intensities of the three contri-
butions of the scattered?radiation are additive.M In principle, the sum

could vanish becauge of interference, However, this could arise accidentally
rather than as a regult of any existing symmetry., The components of one
part do not transform into those of another part due to the distinct symmetry
properties of the three parts of the tensor. If the acattering esystem is freely
rotating in space, the interference terms cancel out (see next chapter) and

the intensity of the scaitered radiatinn consists of the surmn of the three parts,

For coherent scattering one obtains, according te (5.13),

a {0} >— v |
(¢}, =a,, =2/3n rk 5 2|
ke (k) S N l (-Mo)kr{ i

0

il

v - v
L rk v
{s}, _ N rk % % 0
(c.pc_ }’\k)_ l/h,-'z; -I—*_'Z' z [(Mo')kr(Ml rle T (Mo)kr (Mp)rk } - (e )kk
Vi TV {5.14)
e

a _ N 1 *
e (M ) - v e, 7T

rk

In coherent scattering, there 1z always a contribution from the trace scatter~

)

(Cp(f )kk

ing pregent since equivalent terms combine, The trace and symmetric parts
are real, wherecas the antisymmetric one is Imaginary, The latter vanishes,

as was stated above in part (b) for (1) real eigenfunctions, [(Iwa)lcr = (Mg)er],
and (2) for v = 0, as evidenced by g, {5.13) and from therrhodyhamic conpidera-
‘c(ionsa Fer v =0, Eq, {5.13) shows that the antisymametric parts of the inco-

herent part of the unshifted radlation vanishes,
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permitted in the spoataneous quadrupole rather than dipole radiation. The
theory has been developed for the unshifted radiation only, See E, Segre,
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Chapter 6, The Scattering Equation for Random Systems

The resulte derived in the preceding chapter are of 2 general nature,
They apply to cryctals {ingofar as the systems examined are small compared
with the wavelength), or to atoms, and molecules in any external field. TIor
random atoms or molecules, such as gasee in the abrcence of any external
field, the above expressions simplify considerably.

We shall consider next the general properties of such a system, As a
result of random orientation, the total angular momentum ig an integral part
of the classical equation of motion, There is a corresponding quanturn num-
ber which is 2 measure of the total angular momentum. The eigenvalues of
its square are &’ J(J + ].\,l

ach state Jis {2J + 1) degenerate (directional quantization), Coasider
a weak magnetic field; then, for each J there are (2J + 1) values of m, where,
for the vector model, m is the projection of the total angular rnomentum onto
the field direction, Since there is no preferred orientation in apace, zll
physical prepertles of the system must be independent of the direction of the
field, The same holds for the intensity of the scattered radiation, which,

according to Eqs. (5. 52) and (5. 5b), may be expressed by

1 km |2 Ny, & o
\23+1) 7 !( oo nmfcml . | (6.1)

The summation extends over the magnetic initial and {inal states, m and m!
respectively; k and u refer to all non-magnetic quantum numbers of the
initial and final states, The factor 1/2J + 1 arises from the fact that the ex-
pression must be divided by the spatial degeneracy of the initial state, The
probability of finding an atom of state J in a magnetic state m is 1/(2J + 1).
Eguation (6.1) remains unchanged when averaged over all orientations of the
megnetic field., Averaging and summing are interchangeable, If the summa-
tion is carried out over m!, followed by averaging, the result will be inde-
a
pendent of the second indexim, ~ Hence, in (6,1), one can replace ontof the
summations by averaging over all orientations of the magnetic field and by

multiplying by the degree of spatial degeneracy:

™M

AN N !fc ) kIan: 5_ it(c —u‘{—ﬁﬂ;ié (6 2.
ZIFT L L [ Veolam! | = ' po’nm! e -2)
m (493 ' m )

where m, m' are the magneiic quantum numbers for any {ixed direction of
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the magnetic field, i, mt are those for a field direction different from the,
. km ; =
ie QO‘)“\rr' '
Lpaow e%%ﬁnf"td and one must average over all its values, This can be done
. T I kM |2
DYy €XpPY CBBIng ‘i \C‘JU)AIE{‘ 1
ordinate system whose z axls coincldes with the magnetic field,

Ada

orw.n?l one avxd extend over all orientations, The quantity l
I

in terms of the tensor comaponents in a co~

1(};.:: SR 1\.7;'wn — - R
(CPO’)n;‘X’ - f_\ (e 5O oim SO p p COB U T (6.3)
pov -
The quantities (C»-&—mn, are no longer dependent upon the direction of the
P 2

.

magnetic fleld, and hence, (6.2) must be averaged over the products of the
direction cosines, Provided ¢ . is separated into the three parts defined
above, upon averaging Ed. (6. } the terms containing products of different

(’L\)"'o

parta vanish, and

* km p Z Z km |2, l 8, k2
! 6 ) 1 v {c 7 H
vy pO’ N oO‘ nm i o 1at { 20 'mm l

m

) Z [ W b (6. 4)
X nim
The scaitered radiation of random systems consiste of three Independent
parts, whose intensities are additive: trace, quadrupole, and dipole zcatter-
ing,

So that the treatment may be simplified, we shall introduce circular co-
ordinates: z, (x + iy}/2, and {x - iy)/,,z, which are denoted by 0, +1, and -1,
respectively, Hexe the selection rules for m assume a simple fcrm. The
followln; axrc the relationchips between the circular and cartesian vecior and

tensor componenti,

MO = Mz
M, = 1,{/2_(Mx + AMY) (6. 5a)
= 12{M_ ~ iMx)

e, = Lot - )t /% (cxy teg)
- - -i/2
c 1 1/Z<C}: C‘/y) 1/ C)Cy * ny) o - o
¢ ., =1 2l +c J+if2ilc -c ) “ (6. 50)
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{6. 5¢)

=N _ A

Cy® 2 S St (6. 5d)
)

_ 0 hY 3 a
T © 6~g.r. i TR * “Ap

£ 0 N ( \, = - M & 1

= - 5 ¢ : !

CM}. I/Z\C) L ;.m) © wt e (6. 5e)

>

The circular tensor components have the following significance: for lincarly

polarized incldent vadiation the matrix element €00 denotes the parallel com-
v

tude of the scattering moment, Perpendicular to

and ¢ ,, describe the left and right circularly polarized comporents,
regpectively. Correznondingly, the quantities s\ determine the relations
AL

zed incldent radiation. In gererzl, the mairix element

n
=
o
-
o
=
©
o
o}
>
O

=

compon.ent. of the scattering amplitude when the polariza-

Bouations {6, 2) and (6, 4) remain unaltered In the new coordinates,

Upon wetation around the z{0)-axls, the quantities Mx and ¢y, are multi-
L
- Sy % . s

plied by exp (i) and by exp {{{\ + g)c,j)), respectively, The angular depend-
snce of the eigenfunctlon is given by exp {img) and the product Ll,lp . d‘ka ig

. ’ NPT : ' 3
multiplied by exp i{m - m‘)o\: nence the following selection rules apply to m:

o~ E A '\ ) /- o -~



km

! # 0 for m' - m =\, {C.6a

Absorption: (M)

I

< 4

Raman effect; =# 0 for m! - m = \ + . (¢ 60

)

c
{ A/ nrm!

The scattering cross section of randomly oriented systems i3, ae was 2

in (5. 5b) and (5. 5¢),

27 ’._‘.b
I 9)\‘1&
1

kn

———

r\,,/

9
]

£

55 ey

27+1 m m! N ,\
This expression can be simplified in various ways., If we use the selection

rulee {6.6b) and note that Cren is invariant and no longer nceds to be averaged,

we.obtain, {rom Eg. (6.2)

DR S AN e

k“x )\IJ, n)\+p,

The quantity m in (6.2) was arbitrarily set equal to zero. Expression (6.7)
may be modified further by assuming that each component cf the incident

light vields the same scattering cross section regardless of itg polarization.

Therefore,
h le 12 ‘
S \: i I(CO )n;f;_,, | (6. 7b)
8 Mmoo A b b

In general, it is possible to reduce the four sums in (6. 7) to two, but in most
instances expression {6, 7a) is most suitable,
According to (6. 4), the scattering cross section for random systems i3
compriged of a sum of three separate cross sections;
0 ] a

Ukn = Gkn + an * Gkn

—
o~
°
o
—

l. 7Trace Scattering, According to (6. 5c) and (6, 5e), trace scatiering

ATH

occurs only when the components A + p =0 and m = 0,
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\
0 km 0 km
{ —_ 2
‘C )nm _\l/J, “)'\‘ (CX-,\ nm
O. o 4'1/”}1\2 Ve T Vs Z (M )km (M) TN 9
(e )nm 2 Nrm+ht A nm - (6.9)
- r <V"k - v)(vrn +v) X

The summation over m in £q. (6.2) vanishes because of the selection rule
Am = 0, Since ¢ is a scalar quantity {indepéndent of direction), the sum-
mation over all orientations of the magnetic field may also be neglected,

and, for m = 0,

LS I(CO)

27 +1 m

nn;qnlz _ kconwk012. (6.10)

With the aid of {6.5e) and (6. 7), the scattering cross section for the trace

cattering may be represented by
0o_2'%° . 0
Q = G
kn NG kn
{6.11)
0_,1,0 ko2
Tn 31 (€ o ‘ *

‘The selection rule for J is readily obtained since for the trace scattering

only terms of the same symmetry species combine, Because the Hamilton-
ian of a system randomly oriented in space is invariant, the eigenfunctions
separate into a series of species in such a way that there is a symmetry

type for each J. Therefore, terms with different J belong to different species
and the selection rule AJ = 0 applies, For linearly polarized incident light,

!
e # © and the scattered radiation associated with a dipole parallel

{c

! OOBnm‘
to the eleciric vector will be linearly polarized in the plane of the incident
electric field and the direction of observation, The angular dependence of

the intensity is analogous to Eq. (3.16):

LN

9) = = @, sin® g o 1 (6.12a)
8 ) a :

For unpolarized incident light {for instance, by considering the radiation to

be due to two mutually perpendicular, independently vibrating dipoles),

I\_Bo’kn 2 \
(6) = ==~ (L + cos” b), (6.12b)

81
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where & 1s the angle between the directions of propagation and ocbaervation,
Scattering that is observed at right angles to the incident light is also linearly
polarized, the degree of polarization being

L

/ 1

2
p Lo} = I /I = cos” ¢. (6. 12c)

Scattering observed along the direction of propagation is not polarized, as is
expected from symmetry considerations,

For circularly polarized incldent light, the directional distribution and
the degrec of depolarization are identical with those for unpolarized light.
if the scaitered radiation is separated along clrcular ccordinates, then for
right circularly polarized incident light (u = - 1}, the trace scattering will
contailn only < i ;5 0. Hence for yright circularly polarized incident light and
observation in the direction of propagation, ¢ = 0, the scattering becomes
right circularly polarized, whereas for ¢ = %, the scattering becomes left
clrcularly polarized., Upon observing it in any of the intermediate directions,
both components are preesent, The ratio of left to right circularly polarized
componcnis is

1

P(o) = tan” ¢/2. (6.124d)

2, Quadrupole Scattering, Since none of the tensor componenis vanish,

S&m = 0, « 1, & 2; the transitions £2 occur for circularly polarized light be-~

§
cause only then | A + 1 é >1, The selection rules for J are the same as those
for the quadrupole radiation; /NJ =0, % 1, & 2, The intensity vanishes for
the txansitions in J; 0 -0, 0 «1, 1/2 -~ 1/2,

The tensor component will assume the following form:

( B_)k;m = 1/2h 2 Yrk T Ven ((M )k'm (M )r,rm-p
AR ‘mond Nt (v R rymdpc T N 0 mA N
rk rn
{6.13)
Clom T, mtN 7 & km A
* Uw}x)r, M+ ( p,)n, m+>\+p.,_l ( )nn’x 6~5¢ °

The result of averaging expression (6. 3) in accordance with (6.2) yisids
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] 8 kmt2 o 3
— 2 100t | = 215
~ v wy i
1 }\m pa 1 t s km 2 ) o
Z ot Tl | = Z((COJ Jom-1 § =1/10 G
27+ 1 m 2T + 1 - r 3
] S ) ) (6.14)
s km s
U A (CE.-J. nrn ' = 1/30 Gkn
27 +1 m
1 N s km 2 1 \ km 2 8
i {c 1 ) ’ L—l( ~ ) l :1/5(:, |
27+ 1 Y 11 nm+2 ZJ+1 1-1'nm-2 kn
s N 8 k0 2 , { Lo <A
J:\kn .-i____ g <CKH 'n,, k'*',”. ' ° ) VR 205 Y ¥ PNy \ X KLy (6.14&)

1
Equation {6.14) determines the degree of polarization. For linearly polarized
incldent Jight, the devolarization factor of light scattered perpendicularly to

the incldent vector becomes

— it
N f . km |2 Z l). sk 12
I !tcl)nm-l—l ' I‘ClO )nm-!.—l §

i

3/ 4, {6.152)

L fra

kI | 2 ER R I{T
Z{GO“JP.:";.'.\ ;

m
>_ z(COO )nrni'
m

Equations (6,14) and (3,16} indicate that for any arbitrary direction of cbserva -

tion

o]

1(0) = 3/8w {6 + ein’ 0) i, and p(0) = e (6.15b)

Correspondingly, for unpolarized light,

pn = 6/7
3
0
o) = 3/87 (13 + coe? @) P (6.15¢)
6 + LO*%Z b

p L) = 2508
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. , \un - R : ne 13 . o
Since 1 ar - &[ # 0 fox circularly polarized incident light and observa-

tion along the direction of propagation (¢ = 0}, the scattered radiation will
alzo contain a left circularly polarized component when the incident light is

right circularly polarized, and vice versa., The reversal coeificient (ratic

of intensity of component polarized in the same sense to that polarized in a

reverse scnse) is, according to {6.14),

T— (( ) 1(1‘1’1[ 2 Y (C S)lQTﬂ } 2
nﬁ;ﬂ Varat i e 1 ‘nmz2|

P = T ) km*F = '{S I(C s) YR T 6. (6.15d)
G | Vo G ¢ i fam

According to (3.11) and {3.16) the reversal coefficient may simply be written

&8

A L ‘Z
P(g) = Lt _ (6. 15¢)

3. Magenotic Dipole Scattering, There are non-zero components only

when N # w. Therefore, for linearly polarized incident light, Am o= = 1, and
for circularly polarized light, & = 0, The selection rules for J are the
same as for spontaneous dipole radiation: /A\J = 0, = 1, where the transition

0 -« 0 is forbidden,

v + v, -
a lan ~ kn -1 -1
( e JnmdNdp C T 2 Z—- Ve =) e v V)
{6.16)
km VT, A km T, M+t “
[(M'u)r; m+p<M)\)n, m+Au - (M}\)r, rnnu+>\(I\A}_L)n9 mih, ut’

Upon averaging, according to Eg, (b.2), we have

1 \\— ‘.(c axm LZ o1 \/_](Ca )krn \ 2

ST 41 & | ol mn+l 57 + 1 0-l'nm -1
a k3 ,
=— l(cl l)nrr‘Qm‘Z =1/6 Gl ICRYY
27 +1 m' AT 1
LN 1. 2 Jlom \ 21 l (c B |2
- { = e

TR LR arn. i1 27 +1 G 1 Tnmrl

a N, a k0 2 /

. = A a

Glcn %\1: | \C)\p )n)\+p. { (6.17a)
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Since the components 00 and S do not occur, the depolarization factor

for Hinoarly polarinmed, and the reversal factor for circularly polarized, inci-

i 2re

p o= a0

€

P =0, (6.18a)
According to Eq. {6.17) and the dipole formula, the angular functions for

linearliy polarized and unpolarized incident light are as fellows:

o]

P
1
con
& o, a (6.18b)
. . 2 n
Ie) = 3/8nw {2 + 8in® &)
4
/ . 2
pn‘(p‘) =1+ zin” ¢,
o, = 2, when the acattering is obeerved at right angles to the incident radia-
tlon,

Ag for the luotroplic scattering, the reversal factor 1s different from

rly polarized incident light, provided ¢ 18 neither 0 nor w,

angular dependence varles slightly eince the components ¢ 3
and ¢ . . are different from thoze for the izotropic scattering, Here,

/3'
1 -cos™ /2 . 180)
.18¢

L. cin o/2

Equatlong (11} fo {18) describe completely the behavior of the scattered radia-

tien foxr any particular type of incident light, The scatiered radiation is de-

. . ‘s 0 8 a .
rmined by the three quantities G, ~, G » G, which are, according to
kn kn ¥n <
¢6. 7}, proportional to the crogs sections of the izotropic quadrupole and mag-
netic dipole mcattering.

For linearly polarized incident light and observation at right angles to

i, the depolarization factor may be written, according to (b, 11), (6,14

is) &
35_-'}‘ A BG“_
- e kn
p =g 7 e (6.19)
1Q¢, - 4G
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In the following treatment these conditions are assumed, whereas {or circul-

exly polarized light P is given for & = 0. The reverszal cocificient for cir-

solarized incident light, is

1 _— £
6G, " oo i BB
P = ; - = . " o (6. 20}
, U 5 2 ¢ &V
ionn PGy, TG
In general, for unpolarized incident light,
. _2p
o = . (6. 21)

on L+ p

. - 0 8 , a P .
The three quantities Gl'n ) Gkn , and Gl"r may be found experirmentally for
. Ak

each Raman line by measuring ¥ and p. Thereby their ratio can be evaluated,
and by measuring the intensities, the absolute values are obtained., If one

of the three quantities G disappears as a result of the selection rules, then

~

either P = 0 {for zero quadrupole scattering) or P and p are related accord-

¢}

ing to &qgs. (6.19) and (6. 20): for zero isotropic ecattering,

9]

plsed) o 2 _ (6. 22a)
Zp -1

and for zere magnetic dipole scattering,

plls8) . 2o (6. 22D)

The angulaxr function of the total intengity of a scattered line is given by (6.12),

(6.15), and (6,18), or directly by Eq. (3.16) for lincarly polavized incident

light:
an 2
1(9) = 3/8w ~—— {1 +p -{l~p)cos Gje (6. 23a)
L+ 2p

For natuxral or circularly polarized light:

. an .- 2 7
I{4) = 3/8x [1 +p v il-p )cosT gl (6. 23b)
2+ pn -

The angular dependence of the total intenzity is determined by means of the
. : : . o _ oy s . ) .

depolarization factor {with ¢ = 907), and the total intensity of & Raman line

scattered in any direction is glven by two constants, the depolariszation

1

, . . . , o . \
factor and the absolute intensity at § = 90, for instance, In order to evalu-

o
[
e}
T~
o
A
o)
s
¢l
o]
2]
o]
o]
[a5]
ot
:u
o]
(L d
0
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e
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Azcording to (6,23), the scattered intensity for linearly polarized incident
light will be:
2 - a2 lo .‘- + n
I( 1\'/4-) = 3 U'('FQ ———e (6.2"‘5&)
1+ 2p

. A . . . .
and fox unpelarized for circularly polarized incident light:

1
Ln/2) = 3/8n Q. " Pn (6, 24b)
2+ Ph
go that {6.23) may be replaced by
16) = {n/2)| 1 - =2 cos (ﬂ ,
- 1 .
[P . (5. 25)
i) = I\W/Z){l b et COB ¢.] .
o I +o

Finally, the expresgions for the angular dependence of p and P of the total

scattering may be deduced from (6,12), (6.15), and (6.18), or directly from

{3,16), ag followo:

o (0) = ey, p (@) = 1= {1 - p ) ein® g
L-(l~p)cos™ @
b lp = 1/2 sin® ¢ - (1 - PY/(L + P) cos & (6. 26)

Ple) = ~
1+{n_=1)/223n" ¢+ (1 -P)/3+ Pjcos o

1~ n

4

The moazat
The columna chow the selection rulee for m and J, the valuea of

important properties of the scattering are summarized in

Tahle I,

ps p_, and ¥, and the angular functions for ordinary and livearly polarized

)
incldent radiation,
The isotropic scattering reaches a maximum along the

Figure 3 demonstrates the angular dependence for un-

polarized light.
direction of the incident light, and the magnetic dipole scattering perpen-
dicular to it. The quadrupole scattering is independent of direction, ex-
cert for a zlight predominance of the direction of Incident radiation, In any

event, the intenslty distribution is symmetrical about w/2, unlese the wave-

length iz no longer large compared with the dimensions of the atoms,

N e N, -
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90

180

270

FFigure 3. Angular dependence of the scattered light
intensity for unpolarized incident Light,

a) Isotropic scatterlng
b) Quadrupole scattering

c} Magnetic dipole scattering

e i S,



Tho cxpreccions (5.11), (6.14a), and (6,
1—«-
N e ;\.A[X
mairix Goment (M
% R, A A
1

e writton in the forys

of the A component of the eleciric mioment 1 may

b I'v-

PN 7Y X vJd Jy
M, =Db . . 6,27}
{ RviJhmueN vigt gd'l’\’ﬁ“;\ ? (6.27)
; ] . - 5 ; va . .
where v denotes all the quantum numbers except J and raj boogn i3 Inde~

J’.

5

pendent of ra and the dircction g g1 i3 a simnple function ¢f J and o,

joo )
m
and is the same for random systems, The formulas meay be found in tewi
5 Sy s . - .
books on guanturn theory, ” I Eq. {(6.27) is subsatituied into the exprenzionc

for the tenzor componenis, and applled in Egs, (5.14z) and {6.172), the
. vJ . . , .
quantltics G become functions of b, T which are independent of direction,

For Inutance, fox the trace scattering,

: H { 2 v T an < “r Iz
G ‘J vi el ;djj s JI+ ) 4 {7+ {27+ 3) + d. 1 J\ZJ—-l)j

37
(6.28)
where

(ovy 2 vitgu it JH

S L ‘ v TV s )

a B \> vt ( v vigs H

Ao e - - . o °
1 L‘}_‘T ; AL ( ‘/“.}
(vyy VIV vy

wlaced Scaticred Radiatlon, For the undisplaced radiation, furither

8 v N
vl . kO 2
X T rtmemmng § et ( II\A 0 & ° ZO
T o ) Z},\_ | \ K)r)\. (0 /)

a

Thin quantlty vclotes the average absorption assoclated with the transition
k - x {in particular, for iex >0, induced emizcsicon) and the absorption
{(induced emiscion} of a classical oscillator having the charge and massz
of an clectron and frequency 5 Vkrl“ According to Egqs, {6.29), (5,9), and

(6.11), we obtain for the scattered radiation

; 6. ]2 '
iy -—~2—E—-- | . (6. 30)

Ger © '
l Ve TV l

If + >% {tboorption frequency), frk >0; if ¥ <X {emilsslon frequency) Y. ic
B P
ncgative wad . <0 {negatlve dispersion),

AN AL

There i & simple relation between unshilied isoiropic scatiering and
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polarizabillty of the stafe I, According to (5, 2b):

and magnetic dinole contri-

0), kO {0)

{a . = c( = ; 6.3}
By e (™ heo (@ ey’ (6.3
evprecoiang the lotropy of the tensor, Hence, {rom {6.31) and {5.11), it

followse that
(e bay |7 =Y/3 G, - . (6.32)
h/‘ A

Alsa, the guadrupole and magnetic dipele contributions of the unshifted

ered radiciion may be represented in texms of the oncillatox ctrengthn,

with the oid of Bq. {6.29). Ixpressions which reguire that the intermediate

J are not reproduced here,
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STNCTES

2.

2 of this Hancvoolk,

2. Secicctive cxcitelion of the magnetic gtate iz not being dig

fobe
L)

ugged as it

O

G

contingent uson externsl perturbations which would destroy the free orienta -
tion.

3, The prood is furniched by G, Placzek and E, Teiller, Z. Phyaik 81, 209

4, N\ and u denote circuiar, and p and ¢ are cartesian coordinates,

5. See Wevyl, Group Theory and Quantum Mechanics,



56~ UCRL Trans No., 526 {L)

~
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Chapter 7., Resonance Process

Whan the incident frequency coincides witn the eigenfrequency, the scat-
tering amplitude can become infinife in some instances, Radiation damping,
which, in guantum meachanics, arises from the finite lifetirme of the station-
ary states, was neglected in the derivations given in Chapters 3 and 4, If
this damping is taken into account, ! for freely rotating systems, Eq, {5.1)

will be replaced by

T km rm-+x
M
- kf’“’l - ]/h T r(lVI )V"n—LP'(\A)\ l"m-‘-)\‘}-p. ( ’\>1-y_n+}\( Lu‘)n"ﬂr/'\_f_fm
pYURS she o8 2 C TR ) “é)"‘ l v ~ v o-iy v Tov o4y
L rk r rn r
(7.1)
The damping constant vy is defined by -
ni &

T e 5 Vv

3¢h rY

=1/ bér- N 13 > l(M ro

4ﬂyr

The summation extends over the levels r', which are lower than r; T
denctes the lifetime of the state v, As it is the same for the magnetic sub-
levels of r, the damping constant Yy will be independent of m.
A1 ovid v ~v | and l v ; v‘ >> damping may be neglected
IOLeairk { Yr i Ten T Yr? ping may e
and g. {7.1) transforms into the usual scattering formula. Near the region of

resonance, the damping factor becomes appreciable, as may be secn from

™

Eq. (7. 1).
We shall now discuss the possible resonance processes:

1. Undisplaced Scattering (Ek = En)' Resonance may occur for all

transition frequencies of the states considered above, The only terms in
(7.1) giving rise to resonance are the first and second terms, for absorp-
tion (Vrk > 0) and emission frequencies (vrk < 0), respectively,

2. Displaced Scattering. The first term gives rise to resonance when

v = v _ , and the second term, when v=-v_ . Since v and v + v, (incident
rn lea

and emitted radization) arve always positive, the former (the latter) situation

occurs when £ >E and E >E (E_ < E and E < E ). Therefore, reson-
T k r n'r k r n

ance never occurs when the energy of the intermediate state r lies between

4

that of the initial and final states, On the other hand, resonance ovccurs
when the incident frequency is the same as the absorption frequency of the
initial state or the emission {requency of the final state, In other wovds,
the emitted frequency must coincide with the absorption freqguency of the

&

inal 3tate or with the emission frequency of the iniiial stat

~
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The last case, which can be readily visualized by reference to Fig, 2
will requive further consideration, It appears paradoxical that an atom in
siate k, irradiated with an emission frequency n, which is nota transition
frequency of &, should scatter very strongly, aand that for continuous irradi-
ation an absorption linc appears in the transmitied light which does not
correspond ¢ any absorption frequency of k, Since there is a spontaneous

transition from state k to r it is not permissible to choose Y, as the un-
-

3
perturbed eigenfunction. Rather, a finite probability exists for the atom to
be in a state r. Hence the appearance of an absorption line Vi
irequency of state r3) can be explained by assuming that the initial s
s linear combination of L{Jk and Lpr . 3

Near resonance, the degree of depolarization of the scattered radiation
can be reazdily calculated because the ratio of the three terms of the scat-
tering which according to £q. (6.22) determines the polarization, becomes
2 universal quantity depending only on the total angular momenturn J of the
initial, resonance and final stc’zttées.th As example, we choose the depolariza-
tion of the undisplaced scattering of a state with total angular momentum J
sonance of a transition AJ = 0 (see Chapter 25, b), According to

re
Eqs. {6.11), (6.14), (6.17), (6.19), and (6.28),

o =1/ AL (7. 2)

3NT + 1) -1 '

The scatiering cross section near resonance may be obtained from (1),
1f, from the vresonance state r, only the tramsition to the initial state kis
possible, then the scattered radiation will not be displaced. The cross sec-
tion, according to {7.1) and (6. 7), becomes

Z .
Qv =v ) =\2n g, /8- {7.3)

s i
The cross section will be of the order of the square of the resonance fre-
cuency; it i independent of the f-value of the transition k - r, The great-

est value of the cross section will be obtained for .'Ik = 0, J'r = 1, where here

gr/gk = 3/1 = 3 and
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If transitions {rom the resonance level r to other states are poszusible, dia-
placed resonance radiation will appear also, In that case the individual

croseg gections G, , as well ag the total cross section Y o,

gcatiering . ;G
dzpends upon the f-value of the trangitions k - r., The total cross

iz vesually amaller than (7. 3).
The depolarization in the resonance region is very sensitive to axternal
perturbationsz, as may be seen from Eq, {7.1). To firast-ovder npnroxibmation,

.

an exiernal field cavses a splitting of the directional degenerate egtiic:, Thig

he region of Yesonance, but in its immedlate vicinity
slight displacermento of the trancition frequencies become appareni uiuce the

denomainator of the scattering forrula is small, Those feyrng in the ncatter -

ormula that are subject to interference because of

now and will give rize to a change in

(&4

2 way that the fleld will always cause an increase in the depelarization, I
the ,» magnetic field) iz parallel to the electric wector of

the incident radiation {perpendicular to a plane, for circular polarization),

.order

adiation remaing unchanged o o {ix

the n

in rule

approxdmation, Oppenbholmer and Weisskopf supplied the proof for v

whiich was annuncinted by Helsenberg before the advent of the modern guantum

Aside from a depolarization effect, the magnetic field cauvnesn a rotation

of the plane of maxiraum polarizstion, which rotation Lz proportional to the

vh and vanishee abruntly outzide the region of resonance, This

xity of the damping term in the acait

Eifects of the external field on the polavization of resonance radistion
w2 studled experimentally for the undisplaced scattering {regonance fiuor-
3

ezcence), The game oboervations are expected to occur for the dis:laced

resonance radiation, Most likely, investigations of the vapor state of

4

thalliwm couvld be carried out without great

S

Resonance radiation hae been dealt with in the article by Hanle in this
Q
- . @
Handbook, by Pringcheim, ~ and by Weigekopf., A fow special cacaes nve
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TNOTES

Weigskopt {Physik, to appear in 1933) showed

that Eq, (7.1 1o applicable in the above form when the MWistinaes of the initial

aton ave large compared with the lifctime of the intermediate
)

state. Tuio holds only if the initiel and {Inal states

ptate or meta-ostable states, or, for molecules,
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berg, wesing pre-quantum

&

zhould be rewlaced by the above,

IS

hao no sionificance when as a result of special force ficlds, terms

crent J valuca are degenerate, {(examples: He-ztom; three dimen-

sionad hormonic osclliator); BEq, {7.2) is not apulicable.

5. OCppeohcimer, 2. Phyesik 43, 27 {l 927y Welsskopi, 1.c,
6, W. Zelocuberg, Z. Physik 31, 617 {1925), Heicoakerg used the opposite

apnyoesch in tuot he calculated the intensity and polarization o

in the aboveedefined magneatic field and from e deduced the value of these
quantitics for fivoreacence in the abscnce of a racgactic field,

1,

8. . Pringshetm, Fluorescence and Phosgphorescence
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4

Chapter 8, Scattering Processes and Thermal Equilibrium

The expressions derived in Chapter 4 for the scattering probability
assure thermal equilibrium, They satisfy the requirements thot Planck's
energy distribution of the radiation cavity and the Boltzmann distribution
{corresponding to the sarne ternperature) of atoms in stationary states will
not be alitered in the course of the scattering processes, This may he de-
monstrated in the following manner, According to Eq. (4.9), the number
of occurrences for a scattering process involving a light guantum of polar«
ization j, within the frequency range v and v + dv and solid angle dw, to go

over into v! and v!' + dvy dw' and j', and for an atom to go from state k to n,

is given by

?

= dvdvtande!s”
den— NkVan v &y Guwde E')V"Lan
/hv’3 o
-vv —_ 1N \ } 1 1 ) v , R
Clzlqr\_ = Nkpj(V,-w).\.__B__ b Pjg(/ » W )} Gr)kn(v,v "‘gj’{‘j’)d’d",dwdw:bv+v
5 o
4 1
4 g )
Pen ™ }”6’)“}“ ; Y §— E g("ﬂ o €€ ;2,
s K P o3 L o J X o) Oi
Since from Bq. (5.0)
< { = —c (v + \] g 3
[\'PU\V}] kn ; oo T Vrn'd nk (8. 2)
B fvu b i e § o 0 et 5 |
Srenlvs Vi Aj,k j’) J,7nk(v vk ,kj), where (8. 3)

viE= vty .
K

If transitions occur between degenerate states, Eq. (8, 3) will apply

ka
separately to the individual transitions of the quantities éns‘& corregpond-
ing to different sub-states, If we set, as in Eq. (5.2b),
S ks ks
v, =1 SW ? 5 =1 Z b .
W kn /gk o ns' ? §kn /gk ] Pnat
5s ss
then instead of (8, 3) we have
By Bun (VI Rp K = 8 By (VL vy k). (6.4

y

3
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Uren substitating the Boltzmann distribution and Plancikis relation in place

of Ny and p (v, ) tnto (8.1,

o D /k Ty .3 .
N, = l& and p.{v,w) = i%.-— : . {&. 5)
= r}_g_leprEn/kT) J c explhv/kTY -~ 1

5

t 1 scen from Eqg, t cesy defined in (8.1) occurs as
It may be scen from Eg, {8.4) that the process de y
often as its inverse, The inverse of {8,1) arises from the exchange of the
initial and final states of the atoms, and frowma the wmha"wc of the incident
and eristed gquanta, The equality of the probability of inverse processes
ig uaually sufficient to assure thermal equilibrium, ~.
Alternatively, if one squates the number of occurrences of inverse pro-

cesses {orincinle of micros lc revergibility or detailed bala o

SH5ES (Principle OX MICTOSCOYPIC TEWEYr J1LLLlily Or aelalild ala Lclu.u) g,
(8. 4% mnay be deduced., Thic identity--which is sufficient but not necessary

for the atteinment of thermal equilibrium--~ig based on the Hermitian, i.e,,

quasi~Hevmitizn, chavacter of the quantura mechanical matrices, which is
s
5 - -
expressed by (8. 2). The Eqs. (8. 3) and {8.4) follow directly from (8. 2).
AS

e

and anti-Stokes lines, and the

w

intensity relations between Stoke

{requency~dependence of the intensity of these two lines are Correlated in

Ea, {8, 33 I we introduce the previously defined scattering croszs section,
., which 18 ascociated with (I)lm in the following manner:

axd i N

N 24—
. hv? JTRETLIAN X
-~ 1 — § o~ v T - P i ‘
(Vi) = - > \w, det = Y &, (vik,, vi, Kk, )do! g
u.‘\\‘.n( \J) g kn z, ./_(_ Pi{n( H ‘)9 1) )y (Uo 6)
Co AV, W} J

81 ™kn J - °n ok (V""KJ‘)O (8. 7)

Upon averaging over all values of k, or k., as in Chapter 6,
& & 3 Jxﬁ ¥

4 4

V- N ®)
ek Tkn

o

vy = v g (v, (8. 7a)

For systermns randomly oriented in space, it is not necessary to average;

hence
¥ \4
7, 5, {v) {v + v, )
PUEY K o .
= 4 ° (0,8)
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Equation {8, 6) applics 2lso separately to trace, quadrupols, and magnoiic di=

pole scoitering, the intensity and polarization for cach divecstion is

ki X - - TR o
flzed, The dopeio .ciox ig now

Ile o : = 5 -y N (3
p{ls =y, v) = p{m el v Vieni® {8.9)

e

- n excited by v along any direction is determined

by the intencliy alon the garne direction of the llne n -~ k excited by v 4 v

if we express the ratio of the population of states in terme of ¢

(8.10)

The intensity ratio of the Stokes fo the anti-Stokes line 1z quite different
depending upon the Kreq‘mency function in the interval v and v + v . Two

frequency dependence of the scattering moment (i, e.,
mnay be neglected within this reglon. For instance, this holds

v lo far Irom any resonance region, The frequency de-
3 g : . 4 )
vondonce of the Intensity will be given by the factor v!7 {v! refers to the emitted

mnag ver

[sfé%¢

=

m.s.f_j‘.:-i'.'tua:i'?,, Thn wall-ctudied resonance spectrum of I vapor cor
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Ny 4

Simiinrly, in the inter La
laws on one he

gy PO (N T
and antn-3tolies

mediate region between that given by Rayleizhis
aud, and resonance on the other, the iatensity ratio of the Stokes

lines i3 a function of frequency and temperature as shown in
Eq. {8.10%,
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REFER E}_*'("ES_J_\‘T\T'J FOOTNOTES :
1o Tm Chapter 4

the probability is given in integral form
enttal form is z

while the diffe
written symmetrical in v and ! by means of
(U5 TR SR T A 1 o PR o
puy, Which defines the energy of the system.

the opex

,.1
O
1
<

al Mechanics,
. rnetein and Kramera, Z, Physik 42, 481 (1927); Pauli, Sommerfiald
commermaeration issue,

Placzek, Z. Physik 58, 585 (1922

in a paper on the zame subject {Z, Phyeil

i

57, 533
(1629}, uvsed an incorrect exprecsion for the {requency function but corrected
it later (Z., Phycik 68, 257 {1933},

5, A completely analogous v

=
-

elation may be obtained for the cross sections
o5 colliciona of the firest 2

and gecond kind, Klein and Rosceland, Z
46 {1927}, I w

Z. Fhy=zik 4,
¥ we denote the energy of the incident electron by v, then
3 \ 3
- ) o= A Y e
T 8y O’knw)’ M+ Tkn' On Onlf {n + an)

(8.8a)

The difference i the

onents of 1 in (8. 82) and (8.3) {g duc to rclativistic

ght quanta, This relation can be written in 2 form

on ig de-
number of particles rather than the energy. Tor the
newly-defined crosz sections S’fr

A

glzskn('\')

AN
N NK

70 {8.8b)
G ANy T
where )\ refers to the de Broglie wavelength and

LYANESRYANE R VAN
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PART II
THE SCATTERED RADIATION OF [SQLATED SYSTEWS

k

A, LIMITING CASES

The Harmonic Oscillator

1 discuss the behavior of a one~dimensionzl oscillator, fixed in

the x dircction, and a particle of charge ¢ and mass y to be acted upon by

/ :"
poteniial
2
(VA 17./2. X oo {90 1)
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ulate the unshifted scattered radiation, we examilne Eqa, (5. 2c)

and (5.13), Upon zumming over the two intermediate states (v + 1) and {v - 1},

we obtain, for the trace scattering,
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and for the quadrupole scattering,
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Acceording to Eq. {9, 3}, the scattered radiation of the harmonic oscillator

iz independcent of the guanium siate, and lte intenslty has the clazsical value.
WNovwr, the significance of the grantity § in Chapter § becomensn clearev, As

be seen from Egs. (5. 3) and {5,14), the amplitude of the coherent gcat-

toering can be written 25 a zum of oscillator amplituden. The f-value zasgoci-
ated with a ziven trangitlon represents the ratio of ozcillator amplitude o
ccattering ampiitude of an ogcillator with charge and mascs of an electron,

p caloviabe the shifted scattering radlation, we subatifute (9.2) into

7

2 with intermediate levels v + 1 ond v =1

‘,:hc third common-lavel rvle and the

o v N
on rule Ow 4= 1, Sloce (M ), and (M )v’ become zexe, only the com-

‘ =0 {3.5)
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Becauze both torma in the Xramers-Helsenberg formula cancel each
other out, there la no dicnlnced accatiered radiatlon assoclated with & harmonic

coaciiintor, Howewver, the frequencles and transzition amplitudes appearin

in the two terms are diffierent for an anharmenic cscillator., They do not

comarletely compensate each olther, with the result th scoitered
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radintion vwill appecr. Noncibe

ess, it may not be conciuded that molecules

1

glve rlage to dirplaced scattered radiation for anharmonic nuclear vibrations
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enly and hat the istensities of the Raman lines are a direct functlon of the an-
harmonicity., Those ptatements apply merely to that part of the scattered
radiation thel arises {rom nuclear scattzring, while the cucential part of the
radiation scattered by molecules is due to clectronic scatiering,
Ia the classical theory one obtains the scaitered radiation of the oscillatior

by staviing with the expression for forced vibration

which glves the regult shown in Eq. {9, 4). When anharmonde

troduced, tewmns appeax in the solution of {b) that corxeepond

o
=
&
y
e}
3
o
(€]
o
r
-
o
&
o
o

placed scattered radiation, Lommel pointed out these re
1¢ taree-~dimenoional isotropic harmonic oscillator behaves analogously;
it represonts a system freely oriented in space., The displaced scattere
radiation vanizhes, but the undisplaced radiation conegists of the trace scatter-

ing. 7The seattering cross section
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Clunter 10, The Free Electron

The eigenlfunction of the free elecivon euxiends over the whole space,

Since cur {ovmulas are valid for scattering systems whose dimensione are
sranll compared with the wavelength, they are not apnlicable directly in this
croz, By neglecting the {requency changes of the scatiering {Compton effect),
onc can consider, instead of a free electron, an electron in & force fizld that

resiricts the dicplacement of the scattering svatem to a region small in rela-

tion to the wavelength. The binding cenergy should also remain small compared

with tlie energy hv of the incident light quanium, and it should not affect the
intensity,  The {ype of force field i3 not important, but the latter condition re-
the eigenfrequencies oi the system be small relative to the incident

[+ /

For this case, the scattering formula has been discussed in

+

1t nas been shown that the incoherent scattered radiation and

the comnponentis ¢ (p # o) of the sca.tte.c‘lng tensor for the coherent scatter-
oY)
v .
ing vanish, Tor c we obtain, using Eq, {5.1l) foir the special case of a
Po
ong-clectron system,

)
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H TN
The scattered radiation consists of trace scattering only, and the scattering
croess sectlion becomes
4
<
D= 8w/ e —yr s (10, 2}
(L C

This expression was originally derived by J. J. Thorpson; it can be obtained
frony g, {9.7) by putting k = 0, It should be remermbered that t

intenszity of the free electron is independent of the incident frequency, a

fact that is important for astrophysical applications,

The exprestion (5.11) can now be interwreted in terms of Egs, {(10.1) and
{(10. 2}, The gcaitering intensity for large frequencies of any system becomes
equal to the square of the sum of the scattering amplitudes of its nariicles,
wiich are ascumed to be free., From this and Egq. (10.2), the principle
cvolved that the quantum theoretical scattering intensity of a bound electron,
in the limit of large frequencies, goes over into the classical scattering in-
tenaity of the free electron. This principle was alvecady postulated before
the introduciion of rnodern quanturn theory, but it gained furihex significance

P - Z
vrith the discovery of the fundamental lawa of guantum mechanics
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ger small compared with I, the condltions {or ths
t cimultaneously. Retardation and relativiciic effects

.ece considerations lead to the Compion effect and to
’J,

s
and {10, 2), See the Klein-Nishina formula.”



“Tiw UCRL Trans No. 526 {1}

NTES AND FOOTNOTES
S £l S S et

‘e hermonic oocilletor illustrater that both

slmaltanccasly, If we equate the displacement of the system o the :

poing coaplitude of the ogeillator in a given force field, the flret condition is

h
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necond condition is VO << v. Ag long as hv << pc”, both conditions

ars comnpatinlae,
2. H, A. Kramers, Physica 5, 369 (1925).

3, Eco Beclk, Chapter 33,
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B. ATOMS

Chapter I, Energy Levels and Selections Rules
The atomic energy levels are characterized in the following manner,

If the electronic interactions are neglected, each electron will be associated

with an angular moment lj - A/2 and a spin moment sj'h =1/2 + 4, Ifintexr-

action is talken into consideration, these vectors can combine in several ways,

depending upon the coupling relations. The simplest combination is known

as the Russel~Saunders coupling, Here the orbital angular rmornents of the

individwal electrons yield a resultant orbital angular momentum L, and the

spins, a resultant spin moment S. The vectors L and S combine to give the

total ztigular momenturmn J, where J can assume the values
1 1 !
L4+S, L+S-4L, ..., L =-S].
'

In the usual Russel-5aunders notation, the values of the quantum number L
are described by the letters S, P, D, ¥, for L.=0, 1, 2, 3, respectively,
In addition, the left index designates the multiplicity 25 + 1, and the right

4
index the total angular moraentum J, P1/2 denotes 2 term of S = 3/2, L =1,
: 1

The following selection rules apply to emission and absorption {dipole

radiation)., Strictly: AJ =0, +1, and to a good approximatioa: AL = xl; for
weak spin-orbital interaction: AS = 0.

In addition to the rules for J transitions, the following rules exist for
scattered radiation: AL = 0, iz{z) and, as for emission, AS = 0 for weal
spin-orbital interaction,

According to Chapter 6, the rule of alternating states applies, inde-
pendent of LS coupling: In emission even terms combine with odd, and odd
with even; for scattered radiation, even terms combine with even and odd

ternmis with odd,
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Undisplaced Scattered Radiation

According to Tabkle I, quadrupole, and magnetic dipole radiation vanish

itiona J = 0 - J = 0, so that the scatiering will be lincarly poiar-
1

lzed., The rare gases having a 'S ground state are representative examples
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Table II prescnte the denolarization factors for patural incident light re-
ported by Loxd Rayleigh,l Cabannes and hiz students, g and Poriharasathy, 3
Table II. Depolarization factors of the scaitered
radiation of rare gases,
T o= nd o3 s
Pn
<0065 < 0,03
< 0. 01
0. 0046 1) 0.0055(4) 0. 0036
0,0035¢*)
Xenon 0, 0055<Z)
e e e e S e ) ¥ e e e
An upper limit was established for the depolarization factor of He and
Ne, while f{inite values of the order of a half per cent were obscrved for the
remaining rare gases, It is doubtful whether the deviation frem zero is
real, “ particulaxly since Stx.artb veported that the values of 20,0077, ()
0. 0059, p and C. 062{8) for CCl, obtained by the same method as that for
A
the rare gases, are irreconcilable with his measurementn of the Kerr eifect,

Hie experiments yvlelded a maximum value of 0, 0015 {sce Chapter 24),

The scatiering cross secticng of the rare-~gas atoms densad upon the
polarizability according to Eg, {6, 31) since they involve only isctrople scat-
tering and may be exnressed in ferms of the refractive index. The statistical

<
ses wasg calculated by Kirkwood,

)

polarizability of rare g
The rare gases are the only atoms giving rise to scattered radiation
outside the region of resonance. Since the atoms of other elaments exist
as dilute gases, i.2., vapors, the intensity will not be strong enough to be
obaerved except in the resonance region, 10 The unshifted resonance redia-
11

tion waa obeserved for the following vapors: .
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ansition J 1/2 - 1/2., while the magnaetic dipole scattering iz not

izrization factor 1s now computed for {he cagse where {he incident

A
frequeasy is close to the frequency of the first deublet of the main series
z
{the D lincs for Na), corresponding to a tranzition "P,,, = 75, or
3 ; ) 3/2 1/2
7 - g Cisce i, 43, —
/a7 B2t g 4

F3/2 2

5T

Fig, 4. Ground term and

excited terms of the alkali metals,
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‘The difference between incident and resonance frequency zhould be swmnall, so
that the summation muct include only the two intermedinte gtates in the scat-

tering formula, as shown in Iig., 4. However, the Ifrequency interval has to

be appreciable compared with the multiplet aplitting. Then, following Zasg,

a ~

r 7Y

“(6.9), (6.16), (6.19}, and {5.27), the depolarization factor becomes:

2
| P12 P,/s12 |
it 1/2 b, 3/2
1Sz 1 S |
VS 1/2—1/ v 3 5/2-
p /2 ' P12 )
pET =7
| T 2
b 2/2
P
Lo
VS 3/2—-1/
1/2

(12.1)

the doublet

z L}

wherve b is defined by {6.27), and the intensity of the two lines of

Qo
0
o
“1

rst approximation, a value of 2 {neglecting

thiz value is substituled into Ka. (12.1), the

numerateor (magnetic dipola zcattering) vanighes by cancellation of the twe

1

terms, and therefore p = 0 far {rom the region of regonance {if the interval

beiwaen the incldent frasquency and the resonance region o iz

ro e compared
with the multiplet splitting). Upon approaching the resonance rericn, the
A o~ et 17 - 1 3 1 A &Y L :

terms will no longex cancel each othar ouf when the distance is not large
compared with the multiplet splitting, and the differcnce in the rasonance
denominator ¢f the two terms must then be taken into account, At the two
ragions of resonance, the depclarization factor is obtained by considering

Hence

the firet (secend) term only,

? - fo 1 - . . o .
/ Sl/ the D, line of Na) will be unpolarized, with 5 = 1. For the
o~
/

A 1 i
line P3/2 - Sl/’ {the D7 line of Nz}, p = 1/4.

» the resonance radiation of the line

fav)

«

pa
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11 metals, the

suulty relations subgtituted

factor of the

ez whope nuclkel posseus a
¢ mnalogous to the vectovia

total sngular raomenium {(usually denoted by M), which causes {he hyperiine
structure of the terms and spectral lines {secc article by Beck), Since,
according to Chawnter 7, the depolarization facior of the resonance radiation
le determined by the initial, intermediate, and final ziates, the componenis
of the hwyperfine structure of a line in the resonance flucreescence cidiibit
differcat depolarizzation, This, in turn, changes the despelarizaiion foctox

of the tetol line, As an example, we shall consider the 2537-A Hy line,

The gcaoticred vadiation will be completely polarized for the 180 grouud term
provided ithe naclear spins are neglected, According to Scaller and Keyoton,

the 200-Tg isotope Zero nuciearw

9‘70) has
hag a zegin of J,/Z and the 201-Hg

fine stvucture cormponents of the even is

for the two components of the isotope 199,

that diccussed above f{or the

spin, the 199-Hg isoctope

isotopc {13. 7%)

Na D doubletyg, The “P

wo. 4%)

ne hyper-

b 2

tersnn w05 T oFl/e a 3/2; these two components correepond to transi-
tions of the total angular momentum 3/2 - 1/2 and 1/2 - 1/2, as in the casge
of the Na D lincsg,

The actenl situation is more complex since the hyperfine structiure coymn-

soveral isotopes overlap.

ponenis of

nation factory for the five components of the 25

phown in Table

In view of

37-A

thie, the cvserved depolari-

.16 .
Hg line™” are those

oL~

reoculiz in depolarized scattored
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{19287y Larrick and Heydenburg, Phys., Rev, 39, 289 (1932).

19. The dlscrepancy between the conclusions about the nuclear spin of Na
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C. MOLECULES

Chapter 14. The Polarizabillty 'I‘heoryl

The scattering formulas foxr molecules may be evaluated in the same
manner a8 those for atoms, The summations are carried out by subsiitut-
ing the transition araplitudes and frequencies into Eqs, (5.1), {6.9), (6.13),
and {6.16). This is an involved operation because of the complexity of the
molecular energy levels, Due to our meager knowledge of the excited states,
it can be carried out for special cases only, The general result can be de-
rived in a direct manner,

The molecular scattering mechanism will be considered next, If we
treat light scattering by electrons in a given electronic state, the energy
changes occurring in the process must involve the nuclei whose quantum
numbers ar¢ the only ones that change. (Nuclear scattering may be neglected
due to the heavy mass of the nuclei,)

The poosibility of energy transfer from incident radiation to the nuclei,
or vice versa, is predicated upon the coupling between nuclear and elec-
/‘g.;gp\ig_\mot_iqnﬁ. Thiec process constitutes the Raman effect of molecules,

So that the scattered radiation may be computed, the scattering molecules

are first assumed to posscss fixed nuclei; subsequently, the scattering is
modlfied by the nuclear motions, A molecule in a given non-degenerate
electronic state and with fixed nuclel can give rise to undisplaced, coherent
gcattered rzlxdia.tionz whoae intensity ie determined by the tensox (Cpcr)kk = (apo')(lc)
according to Egs. (5.2a) and {5.4a), This tensor is real and symmetric for

a non-degencrate state, as shown in the following discussion,

Since the eigenfunctions and the energy levels of the molecule with rigid
nuclel depend on the orientation of the nuclei, it follows from Eq. (5.14)

that the polarizability a will also depend upon the nuclear orientation. We

N
shall assume that the sc(agtering intenglity of a molecule with non-rigid nuclei
is as strong for each given configuration as the scattering intensity of a rigid
molecule having the same nuclear configuration, This assumption and its
limits will now be proved,

To obtain the undisplaced scattering radiation for a glven state s (vibra-
tion and rotation state), the scattering moment must be averaged over all

nuclear configurations possible in this state. Since the probability of a con-

s

figuration In the nuclear state 8 and electron ground state’k/ls given by By
[+
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\k)(s) E=E guB*(q)owk(q)u”(q)o‘-q = ey ", (14.1)

VB, s _ -
(M )0 Y 8

where u and a,, , doncte the nuclear elgenfunction and the polarizability, re~

k
spactively, of(t}Ze electronic ground state. The dizplaced scattered radiation
may be evalunted by otarting with the ""Zwischen' solution of the Schrddinger
squation "n:. * u,B,) taling only the transitions from the ground state g into
account

M7 = & (M@ (@4a = (o)

a8

.1 E (14, 2)

The scattering intonsity assoclated with the transition 8 - a! may be
determined by the matrix elements of the polarizmability, The oplitting up
of the polarizabllity 1o classically analogous to the formation of the matrix
clementa, The polarizability, being time-dependent because of the change
in q, will be cxpanded info {Ime-dependent Fourier components, These com-
bine with tha incident wave and give rise to dieplaced and undinplaced scat-
tered l'g,diﬁtion

To clarify tha abeve statement, conslder the elgenfunction of a mole-

ewle, written in the following manner -~compare with the article by Kronig--:

na(Ge @l = @ (£, QJu_ (a) , (14. 3)

where g, £ refor to the nuclear and electronic coordinates, respectively;

and s, n to the nuclear and clectronic quantum numbera, respectively, 4
d;n'(g,q) reprenents the rolution of the Schrddinger equaticon for rigid particlen;
it contalng the nuclear coordinates g as parameters, The energy Em“a iz ob-
tained when the eirenvalne En(q) of the Schrddinger equation for rizid nuclei

in zubsiituted ag potentinl energy into the Schrddinger equation for non-rigid

nuchels

Ens = EB{O) + anc {14, 4)
E_l(O) in the elgenvalue for the nuclei in the equilibrium configuration.. Ac-
cording to Eqc. {3, 7) and {3.10), the elgenfunction of the electronic ground
piate (I‘O) for rigid nuclel, when perturbed by the incldent light, becomes:
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B, = §,(0) + (D)
r ) + ; ~ \ ) .
@0 = 4)0 exp L-— i/’h Eo(q)t] + ¢O exp [—L/ﬁ(ho(q) + nv)c] (14. 5a)

+ ¢~ exp |-ifA(E.(q) - hv)t],
0 0

where, {vom Eq. (3. %a),

0
'O(AM )
o fwe) =1/ ) By (q,¢)
n VO -V
(14, 5b)
3k 0
- P (ATM_ )
b (WE) =1/h ) B b (q,);
n Vo + v
for non-rigid nuclei: \
0y . . (1) _ . . s
)1303 = 11)03( ) + L]‘}OB( ) . exp [- i/h EO(O)t_lgxpOB exp. [- i/a WOst:\
g, exp [_ i/R(W, + hv)t] (14, 62)
- ) 7
+ qJOB exp [- i/’h(Woa - hv)tJ§
Os
v N ' (A M )
+ ; ng't
Yo, =1/0 A BL T LIRS
Os v
Lk 05 (14, 6b)
] < @ v, 0% \
Yoo MM L Z ST fatnen -
Os -

As long as. the Incident frequency is far from any resonance reglion and
(von - v) is large compared with the splitting and shift of the electronic level,
this splitting and shift due to nuclear vibrations can be neglected in Eq, {14, 6)
and vnﬁ,,OB may be replaced by von(q).

In addition, if v is large compared with the nuclear frequencies of the
electronic ground state, the term with the intermediate level n = 0 (infrared
term) in the sum (14,6Db), in contrast to that in (14, 5b) may be neglected, and
(14. 6b) becornes
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- 0
. ' ;,'(AMnsH Mg Z' am ()
LJ"0::1 = 1/h Z b3 ¢n = l/h n uOﬂd)n
. n VO ad v n ‘JO - v
+ _ + L ,"\l .. l
Yos T %0 Zos * | (14. 7)

2 0

- " (ATM(q)) P

llJOs =1/h Z nn u'Osq)n = ¢O Yos *
. n vg tV

Hence, from Egs. (14. 52) and (14.6a),

Boglbe2) = %4(5’ Qg exp (- /4 Wt - (14, 8)

Only the electronic part of the eigenfunction will be modified provided v and

von - v are large compared with the nuclear frequencies. The perturbations
are the same for each configuration q as for a rigid system of particles,

Anzalogous to Eq. (3.14), we express the quantity aseoclated with emission
from 0,8 - 0, 2! by
3
(G0, e amigy, 6 a)itaq

which, tegether with (14, 7) and (14,8), transforms into

g gipo.';}’(g’ q)MqJ()F;( €, gq)dédq

1

% % . % -
g& ®0st Yo gi Mgﬁo by *P [— Z'rrlva,et] + (4)0 ¢O+ + 4 d;o)
"4 & (14. 9)

x exp (- 2““"3:8 +vt) + (4’0*4’0- * ¢0+*¢o) exp (- 2"1("3'6 - ")t)}dgdq

1

(g (@M (a)e (a)dq exp (- 2miv_,°t) + (g1 ()G (a1my ,(a)da
X exp (- 2.-n'i(v’s,B + v)t)+ gnos,*(q)coo(q)uog(q)dq exp (- zvi(vs'm - v)t)‘

As in Eq. {3.14), the first term represents spontaneous emission; it is
determined by the permanent moment MO’ which is a function of the nuclear
configuration, The second term represents the scattered radiation, and is
determined by the scattering amplitude defined by Eq. {3.12), that is, by

the induced moment of the rigid molecule, which, in turn, is a function of
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the nuclear configuration. The third term represents, as in {14,14), the
double emission; it occurs when v < vS,B. In the present treatment, itis
assurned by vy > vﬂ,ﬂ thus making this term insignificant,

Upon replacing the scattering amplitude (employing Eq. (5.1} by the

scattering tensor, we obtain

(CPG)OS.Oﬁ = S“OB.*(Q)(CPa)oo(q)uOB(q)dq

{14.10)
8
at *

1

(dgq0 (Da g (a1eg (a)dd = (a) )

<

Since apO’ is a symmetric tensor, its matrix elements are also symmetric
tensors, FXor systems in non-degenerate eclectronic states and far from re-
sonance, the scattering tensor for the displaced scattered radiation is also
symrnetric, The magnetic dipole scattering disappears, a fact that can be
verified by direct application of Eq. (5.13) or Eq. (6.12),

The separation of the tensor represented by Eq. (5.12) results in the

following termas:

Os 8

() %% = 0%,

(8) 08 _ ]
(c )OB' = (apO')B'

oo (14,11

{a) Oo

po dost % 0.

(c
The trace scattering and the quadrupole scattering are functions of the iso-
tropic and anisotropic part of the polarizability, respectively, and both de-
pend upo‘n the nuclear configuration, The upper limit of the depolarization
factor is 3/4 (6/7) because of the disappearing magnetic dipole scattering,
as scen in Table I, Nearer the resonance 'region, these congiderations be-
come invalid, In general, magnetic dipole scattering will then occur, caus-
ing an increase in the depolarization and under certain conditions resulting
in new lines,

In the following treatment, we aseumed a non-degenerate electronic
ground state without specifying the excited electronic state, If multiplet
splitting should arise, the derivation still remaing valid, since we can ne-
glect this splitting just the same as the larger one caused by nuclear dis-

placements,
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For degenerate electronic states two possible cases can be differentiated,
If the degonerats levels can undergo mutual transitions during the scattering
procese, the undisplaced scattering of the rigid molecules contains an inco-
herexnt part correcﬁonding to these transitione, The functional dependence
on the nuclear digplacements must be taken into consideration In the same
manner as that assoclated with the coherent part, but different selection
rules will now apply.

For omall spin-orbital interaction, the spin part of the electronic eigen-
function can be separated, provided the degeneracy is due to gpin alone,
States with different spin quantum numbers do not combine which accounts
for the absence of incoherent scattering radiation and for the fact that the
above results retain thelr vallidity, An example is given by the electronic
ground state of 02 (32‘,). A more complex situation arises when, aside from
spin, orbital degeneracy exists, which is associated with large multiplet
splitting,

The assumptions made in the polarizability theory are summarized
again, an follows:

l, Electronlc ground states that are not appreclably degenerate,

2 v Vie? (ve - V) > Vi

As was indicated above, the theory can readlly be extended to molecules
that do not fulfill the first conditions, However, the second condition is more
significant, Scattering phenomena not covered by the polarizability theory

are treated in Chapter 25,
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2, Displaced scattered radiation that is assoclated with electronic transi-
tions when the molecule exists in its electronic ground state occurs only
when v > Ve (ve corresponds to the lowest electronic frequency); however,
in the subsequent discussion it is assumed that v << Ve

3, This is not strictly correct, since the eigenfunction perturbed by the
incident wave ought to be examined, '

4, It is presumed that the notation n will not be mistaken for that used
ordinarily to indicate the final state,

5. In order to transform (14.6), the quantity AMnO(q)uos(q) is beilng derived
in terms cf u

na't

!
0 . Z\'_“_ 08
[AM, (@) Jug () = Lo Buon ngnld):
Multiplication by U e and integration over q yields because of the ortho-

gonality of u_nt

Os Os
ne'' AM g
and ! 08 0 .
L (AMns" )uns” = [AMn (q)] Bog* g

S”
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Chapter 15. Application of the Polarizability Theory
In contrast to the properties of the general scattering tensor, the matrix
clements of the polarizability are Hermitian, as may be seen from Eq. (12.10):

(pr)s'g = (a_k_#)syaw. (15.1)

The notation for the indices is determined by the complex description for the
tensor components (Eq. (6.5)); also note the selection rules for m,
The intensity ratio of the Stokes and anti-Stokes lines are given essentially

—_—

by the population of the states, so that

Ia (v + vs,s)4; . .

7 = g €xP (= By /KT), (15.2)
8

st (v ~ Vgt )

If the agsumptions of the polarizability theory regarding the incident frequency
no longer apply, deviations from (15,2) become considerable, HHence, appropri-

ate measurements of Ia/lS may serve as proof of the polarizability theory, The

v
limits can easily be predicuted according to Chapter 11, provided the main ultra-~
violet absorption bands are known,

In addition to the frequency dependence of the scattering intensity, given by
(v + vs,s)é, that of the polarizability must also be considered, However, the
latter is small within the range of validity of the polarizability theory, and may
be neglected within a frequency range comparable with the vibrational frequencies,
The experimental part will bz discussed in Chapter 25,

The scattering intensity and polarization for each transition s —+ s! is given

by two constants since the magnetic dipole scattering vanishes, Hence, in ac-

cordance with Table I, p < 3/4 (p, < 6/7), and from Eq, (6,22b)

p
p= 2P - o, (15.3)
- P L~ pn . 1
where P is the reversal coefficient for circularly incident light, The sense of

the circular polarization is reversed for all the lines for which p >1/3 (pn>1/2).
Such reversal was observed by Hanle and Bér in a series of scattering lines of

2
liquids, ' 3

Tigure 6 shows a; reproduction of benzaldehyde by R, Bar, The strongly de-
polarized lines show a strong reversal of the circular polarization (see the line
615 Cm~l). A quantitative verification of Eq, (15.3) has not yet been carried out,
Since P varies between 0 and 6, while p varies between 0 and 3/4, measurements
of P will yield more accurate ratios of isotropic-to-quadrupole scattering than

will measurements of p,
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Fig. 6. Raman spectrum of benzaldehyde with natural and circular

radiation, (According to R. Bir)
To obtain further information on the intensity, we separate nuclear eigen-
functions into rotational and vibrational eigenfunctions;4

u_ = U (o, (6). (15.4)

9

Uv dopondas on the relative coordinates of the nuclel; and § on ths orientation of
the molecule, that is, on the Eulerian angles 9; v and r refer to the vibrational
and rotational quantum numbers, respectively,

The {sotropic part of the polarizability does not depend on the orientation of
the molecule, and therefore the matrix elements vanlsh for traneitions whose rota-
tional quantum numbers change, > We obtain

0 vrm 0, v r .
(a )vlrlml = (a )Vl 1t m (15.52)

and, according to Eq., (6.11)

0 VIZ' -

(69,0, = 3 )", (15.5b)

Trace scattering occurs for pure vibrational transitions only; the intensity is

not a functicn of the rotational state,

To compute the quadrupole scattering, the polarizabllity components (QLMLQ)p

glven in terms of coordinates fixed in space, must be expressed in terms of

coordinates fixed {n the molecule, o,)\,“,n:

(. /.\",(\')L Y AR N ST S O
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o.)\ps = );'Z‘ ak‘u'SD-k'kD—u'u . (15.6)
M |
D)\'H' DM' denote direction cosines; the negative sign of the first indices arises ,
from the use of circular coordinates introduced in Chapter 6, i
The quantities fixed in the molecule N s) are independent of orientation, }
while the direction cosines are independent of the internal coordinates, so that
(“)\;ES))v'r‘m",rm - Z (a)\'p.'s)V'V(D—)\'p.D-p.'p. :?n+>\+u62+>\+u' (15.7)

)\IP'I
At the same time, the selection rule (m' - m) = \ + pu is obeyed,

By modifying Eq, (15.7) and introducing [G®] . " (defined in Eqs. (6.14),

N

r
(6.7), and (6.8)), we obtain the following sum rule;

2

PR S PO N O M I (15.8)

r! IR
This means that the sum of the scattering intensities of the quadrupole scattering,
associated with the vibration-rotation transitions v, r — v'r', is independent of r,
The sum on the right side is invariant, It represents the total intensity of the
quadrupole scattering v — v'! of a randomly-oriented molecule upon complete circu-
lar irradiation. The quantity 3 .(olo)v,V ' 2 has the same significance as in (15,5h),
The summation is equally valid for the trace scattering, and hence, for the total
scattering. Here the summation extends over r only,

Upon complete irradiation of the system, the total intensity associated with
transitions from a given rotational state of a vibrational level v to all the rota-
tional states associated with the vibrational level v! is independent of the rotational
energy. Itis equal to the scattering intensity of the line v - v' of a molecule
randomly oriented in space. !

The same rule holds regardless of the polarization of the incident light and
for each component of the gcattered radiation, In this case, however, the ori-
entation of the space-fixed molecule is no longer arbitrary; it is necesegary to
average over all orientations,

_I_D_f‘g_q_{: Instead of G, the absolute values of the square of each tensor com-
ponent must be summed over m. They differ from G by a constant factor for
the transitions r - r', Trace and quadrupole scatterings require a differ-

ent factor which is obtained by averaging over all orientations in gpace, as in

£gs. (6.11) and (6.14), Instead of summing over the magnetic quantum levels,
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Next, we wish to sum over the final states r!, as well ag over the initial
states r. Since the first sum is independent of r, the second sum merely
multiplies the right side of Eqs. (15,5b) and {15, 8) by the sum over the popu-
lation indices of all atates r, which i8 equal to the total number of molecules
in state v. The total intensity of the'rotation-vibration band v — v! is inde-
pendent of the extent of exclitation of the rotational levels, It becomes equal
to the scattering intensity which 18 assoclated with the transition v = v! of a
non-rotating molecule, fixed in space, and averaged over its spatial orient-
ation,

Employing the expressions
2
0.v 0 v
31‘“ ?v‘i = [G ]v' ’
i

_ 2 s
XZ‘;: l(GX'M'B)v'V‘ ) [GB]V'V )

(15. 9)

We can determine the intensity and polarization of the scattered radiation
v - v! by these two constants, following the formulas {6.7), (6.8), (6.19) to
(6.26), and [G‘"‘] o =0

In most instances, the rotational structure is not resolved, and a single
spectral line v — vf will appear whose intensity and polarization are given by
Eq. (15.9).

In place of the quantities in Eq, {15.9) we can introduce the two invariants,
v

the linear average value avlv and the anisotropic part [YJV‘

=@, 1 [y ], = v/ [60]L i (15.10)

Denoting the three diagonal components of the tensor (a)v,V by C -cy, and ¢ ,
Z

we have

([ } V)2_1/4 z |(° -c )lz. (15.10a)

whereupon the depolarization factor becomes, according to Eq. (6.19),

3[c®] " 3([v],"?

= 10 [GO:IV,V + 4 [GS} Vlv - 45(av'v)Z N 4([Y]va)z . (15.11)

Vis linearly invariant and equal to the matrix element

The average value a,
of the average value of a, In contrast to this, there is no simple relation be-

tween the anisotropic part of the tensor (a)v'V and that of a.

At e e
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Chaptor 16, Rayleigh Scattering and the Vibrational Raman Effect

To calculate the two constants (introduced ‘in the previous chapter) that
determine the intensity and polarization of the line v + v!, a knowledge of the
vibrational eigenfunction and of the polarizability is required. The latter
quantity, which is a function of the molecular coordinates, i8 generally not
known and has not yet been computed satisfactorily although an approximate
knowledge of the vibrational elgenfunction is sufficient for most quantitative
predictions. It may be written, in firat approximation, as a product of har-
monic oacillator eigenfunctions, each of which depends on a normal coordi-~

nate of a single cigcnvibration:l

U =y (9. (q) .. @ (q ) (16, 1)
v vy v, VaN-6 3IN-6
The vibrational energy is then
3N=6
= gt (v. +1/2)hv.. (16. 2)
i J J

We shall now derive the polarizability in terms of the normal coordi-

nates, starting with the equilibrium positionZ

a(q) = +ZJ:< \q +1/2§:(

jk 8q 99y

)q q +1/6 X -—-i’ii-—q.qkqi. (16. 3)
jke 8a0q 89, J

The matrix elemento areg formed with the aid of (16,1). According to the

selection rules for the coordinate matrices of the harmonic oscillator, the

n h term will be different from zero for transitions involving n, n - 2, n - 4,

vibrational quanta, If the series {8 terminated at the linear term, only un-

displaced scattered radlation and vibrational transitions of n = + 1 will be

obtained, and scattered lines of frequency (v % vj) fundamentals will result,

For the Rayleigh scattering,

(a)V o H1/2 Z (vy +1) ( (16. 4a)

where the zero-point amplitude of the normal vibration j is designated by bj' 3

1/2
b, = (;ﬁ;;) . (16. 5)
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The term in the sum of (16. 4a) gives the difference between the polarizability
of the molecule in the equilibrium position and that in the excited vibrational
astate of the molecule,

For the vibrational transitions, where [v] refers to the unchanged

quantum numbers, we obtain

(viv
b=

a) =1/2{ (v, + I){v, + 2 b+, ..
( e /2( (v, + v, + 2)) ( )

[v)v 3 (16. 4b)
{a) J =l/6<(v +1)(v +Z)(v +3)) -——3- 3+. ..

[v]vj+3

V} .,v
(a)[ iV 1/2((v + 1)y +1)) ( bb +...

[jvJ+1,, v, +1 9q. 3qk 0

For a transition involving n vibrational quanta, the expansion starts with the
nth term, Since the zero-point amplitudes are small quantities, 4 the inten-
gitles associated with the lines v —+ v' decreases the larger the number of vi-
brational quanta involved in the transition, as in the case of the infrared
apectrum, Provided some coefficients assume particularly large or small
values, the sequence in the expansion of the polarizability can be altered;
this cccurs, for instance, whenever gsome coefficients disappear becausne of
symmetry,

For all practical purposes, it is sufficient to examine the transitions
v - vand v, - vj + 1 {Raylelgh scattering and fundamentals), since the over-
tones and combination tones are rarely intense enough to be observed, The
eigenfunction (16.1) must be modified when anharmonicity is taken into account,
since it affects the intensity of the overtones, However, Eq. (l6.4) remains
valid in that even derivatives of o apply to undisplaced lines and odd overtones,

whereas odd derivatives apply to fundamentals and even overtones,

e - - et e s Co——- <y — e

[v]v.
(a)MV;H = (v, » 2 ( >b ¥ 1/6(v +1y( )b +1/6§;J(8q M )b)bk ¥,

e e e
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The polarizability, a, summed over the states v will yield the intensity.
The intensity of“the undisplaced scattering is, to a {first approximation (when
the square term in (16,4a) is neglected), independent of v and, therefore, of
the temperature, The average intensity per molecule for the undisplaced

scattering is now:5

. Z exp (- E_/kT) {[GO]VV + [Gs] V"}

N
2
=12 ¥ V=21 Y T (6. 6a)
v N 9 Z exp (- E_/KT)
75
A, (0)2 2
I{v) = -(—)—;-4-— (3(10 +2/3 Yo )Ip.
where Ip is the incident intensity, For the Stokes vibrational line,
0 [v]vj- s v‘j
75 2: exp (- Ev./kT) i[G ][v]v.+1 * _[G ]v.+l
_2'y j J J J
v - vj) = 7 — Ip
\
9N Y exp (- E, /KkT)
v, J
J
Z (v. +1) exp (- (v, +1/2)hv /KT)
271r5 vj J J J 5 )
= 3a.." + 2/3 v, ") (16, 6D)
% (32 v
I\ - (v, + 1/2)hv /kT ) I P
AT exp (= (vy ¢ 1/2)hy/kT)
J
2 2
_ 275 (3alj +2/3 Y )IP
ot 1 exp (- hvj/kT)
and for the anti-Stokes line,
(v + v.) = 27"5 (3a 2, 2/3 2)1 l:- 1 + exp (hv /lcT)] -1 (16, 6¢)
J 9)\11 1j Ylj P P J ' ’

where alj and YU are, respectively, the average and anisotropic parts of the
tensor (aa/aqj)o. The latter quantity is usually different from (ay/aqj)o since
the construction of the (quadratic) invariant Ylj and differentiation are not

interchangeable,
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Equations (16.6b, c) show that the intensities of the Stokes and anti-Stokes
lines increasne with temperature, This may be ascribed to the fact that the
higher vibrational levels scatter more because of greater nuclear amplitudes
(16, 4b). If the vibration 1s anharmonic, the frequencies v:§+l will depend
upon v and, in addition to the rotational structure, the line will show a fur-

(0)

depolarization factor of the Rayleigh scattering are not independent functions

ther broadening or fine structure, The quantities ¢ and y involved in the

since the three principal values of the polarizability must be positive;
02, 2
o.( ) 2y°/9.

According to Eq. (5.11), p <1/3 and P <1 for the Rayleigh line, thus indicat-
ing no reversal of the circular polarization, An analogous relation does not
oxipt for the invariant quantities of the tensor associated with the displaced
scattered radiation, As the polarlzability can increase or decrease for a
vibration, the principal values of the tensor derivatives may assume differ-
ent signs, Other properties, particularly the derivation of the selection
rules, require a knowledge of the symmaetry character of the molecular vi-

brations,

P e Py e iy =

3
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REFERENCES AND FOOTNOTES
1. See Krlnig, Chapter 6, concerning the definition of normal coordinates,

2. The derivation is valld for each component; the index \u is omitted to

simplify the expresslon.
3. Equation ({l6.4) is valid provided the normal coordinates are normalized

so that the kinetic energy may be written in the form:
T=1/22 b3’
j J7d

The quantities q‘j

and bj have the dimension ¢ \[r:. Occasionally, pure lengths

are chosen as normal coordinates (e.g., the displacement of one of the vibrat-

ing atoms) by assigning to each normal vibration a reduced mass, p,j, and by
proceeding from the normalization T =1/2 Jz.pjﬁjz. The zero-point ampli-
tude, bj" assoclated with the vibration j, is also a length;

bt = d
T
Since the selection of the reduced mass is not arbitrary, the former type of
normalization is applied throughout the text,

4, The displacements of the atoms from equilibrium, corresponding to the
quantities bj' are small relative to the interatomic distances,

5. Since the molecules are assumed to be randomly distributed (ideal gas),

the intensities are additive also for the coherent scattered radiation,

(16. 3a)
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Chapter 17, Fundamental Concepts of the Symmetry Theoryl

A thrge-dimsnsional configuration is sald to be symmetric if there are
linear, orthogonal coordinate transformations which leave its properties un-
changoed, These transformations are th; so-called symmetry operations,
and the geometric representation 18 comprised of symmetry elements. The
symmetry operations have group character, 1, e¢., the successive application
of two symmetry operations ylelds agaln a symmetry operation., Only those
operations axre considered that leave a point in space (which must not ne-
cessarily le inside the molecule) invariant, They are described as point
symmetry operations; the corresponding elements are described as point
symmetry elements, and the group of the point symmetry operation, as point
group.

The point symmetry operations include inversion, 2 mirror reflection,
rotation, and rotation followed by reflection. 3 The corresponding symmetry
elements are the center of symmetry, the plane, the rotation, and rotation-
reflection axes, According to Schoenflies, they are described by the letters
i, o, Cp' and SP, respectively, 4 The possible point groups may be obtained
by combining these symmetry elements, and are limited merely by the re-

lations existing between the symmetry operations, A few simple relations

are the following:

2
3 =C
Bp)” = Cp/2
(s )p/Z . C2 for p/2 even
» for p/2 odd

. CZ, =1 (Uh is a plane perpendicular to CZ)'

i Oy =0y ° 1=0C,.

The point groups are summarized below, along with the Schoenflies
description and thelr symmetry elements, For a systematic construction,
which may be carrled out along different principles, texts devoted to this

particular topic should be consulted,

D En— " -
—— > T e —————————— 1
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p-fold axin; the operations involve p rotations of an angle
2w/p about the axis,

(for even p only) p-fold rotation-reflection axis; the opera-
tions are the p-rotation-reflections (rotation of an angle
27/p, foliowed by a reflection in a plane perpendicular to
this axis), Sp impliean CP/Z as well as CZ and { when p/2 is
even and odd, respectively,

p-fold axis Cp and p planes of symmetry, T going through
it at mutual angles of 2«w/p.

Dihedral group, Cp and a twofold axis perpendicular to it
require (p - 1) additional twofold axes, They intersect each
other and C_ at mutual angles of Zv/p.

C _and a pla?ne N perpendicular to it, When p is even, there
are also the elements { and S,

=S5

Zp
bisects the angle between the two axes, (p -~ 1) additional

. If, in addition to Dp' there is a vertical plane which

planes exist, There is a rotation-reflection elements, S

2p’
as well as C2 and 1 for even and odd p, respectively,

If, in addition to va. there is a plane oL perpendicular to
the axis, then p twofold axes are formed by the lines of

intersection of the planes o, and ¢ When p is even, 1 and

h‘

Sp are also present,

No symmetry.
Reflection plane,
C'enter of symmetry, ,
Fourfold group, Three mutually perpendicular twofold axes
(two of which require the third),

V and a center of symmetry. Three planes going through
these axes,

V and a vertical plane that bisects the angle between the
two axes, Another such plane and a fourfold S4 axis are

required,
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8 - 12, Cubic groups:
These may be visualized most easily by means of a cube whose planes

are intersected at the center by the three twofold axes of the fourfold group

(Vv = DZ)' ‘

8. T Tetrahedral group, If, to a fourfold group, a threefold axis
is added in a spatial cube-~diagonal, then three additional
threefold axes are generated in the remaining cube-diagonals,

9. T One of the twofold axes of T Fecomes a fourfold rotation-

reflection axes, The same will also hold for the two remain-

ing twofold axes, Six planes are generated by any two of

the cube-diagonals,

10, O Octahedral groups, One of the twofold axes of T as well as
the other two are transformed into fourfold axes. This
generates six additional twofold axes which connect the
center of adjacent cube edges,

11. T T and a center of symmetry, There are now three planes

through the twofold axes,

12, Oy O and a center of symmetry in the center of the cube deter- .

mines the remalining cubic symmetry elements,

13 - 14, Icosahedral group.

13, 1 Simple icosahedral group. The group of the spatial rotation
of the icosahedron or of the pentagon dodecahedron, It con-
tains six fivefold, 10 threefold, and 15 twofold axes,

14, Ih Complete icosahedron, It contains an additional center of

symmetry,

The number of operations, including the identity operation, denotes
the order of the group as follows:
for C_, S -
P p’ “p
2p for va, D, C

4p £ D Dp ph
p for oh' Dpyv

12 for T

24 for Td’ O, Th

60 for 1

120 for lh.

R S———
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If a point group contains all the symmetry elements of another group,
the latter is called the subgroup of the former. For instance, C4 contains
the subgroup CZ; C4h contains Czh' i, and Clh' '

Applications of symmetry considerations usually assume that the
molecular symmetry 18 given by the symmetry of the positions of the atoms.
The total Hamiltonian of the molecule is invariant with respect to the sym-
metry operations that transform the atoms into each other. The symmetry
of a molecule may be established by consgidering the nuclei that cannot be
transformed into each other, and generating the remaining points by apply-
ing the symmetry operations of the group, Each point generates {z - 1)
additional points when z is the order of the group. In the general case,
there are z points of each type, A special case exists when there are points
that lie on symmetry elements, Aside from the identity, there are addi-
tional symmetry operations that transform these points into themselves,
The group of these operations is called "the eigensymmetry' of these points.
It can be consldered as the symmetry of the force field when the point is
part of the molecule and is always a subgroup of the molecular symmetry,
The position of a point having an eigensymmetry is described as a special
point position; its order (the number of equivalent points) is no longer equal
to that of the molecular symmetry group, but is equal to the ratio of that
order to the order of the particular group. -

Not every subgroup of the molecular symmetry is an eigensymmetry;

for instance, C, cannot have points of C‘2 eigensymmetry, If a point lies

on an axis, the: it has the C4 symmetry. In case of crystals, the existence
of glide planes and screw axes obviates this restriction.

We shall treat the CC14 molecule as an example, The molecular sym-
metry is Td; the Cl atoms lie on the threefold axea through which vertical
planes run, Thelr eigensymmetry is CBV' and the order of the point group
is 24/6 = 4, The eigensymmetry of the C atom in the center of the tetrahedron
is Td' and it is transformed into itself by all the symmetry operations,

The application of symmetry considerations to crystals requires an
extension as well as a restriction. The extenslon involves operations that
do not leave any point in space unchanged (translation, screw, and glide
operations). The translations require an infinite repetition of the symmetry
elements in periodic order, but this i8 not possible for all the symmetry

elements, Hence, the number of point groups occurring in crystals is re-

duced to 32 these are:
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forp=l, 2, 3, 4, 6

C_ and CPh

va’ DP, DPh forp=2, 3, 4, 6
Sp forp=2, 4, 6
Dpd forp=2,3

and the flve cubic groups,

point groups or crystal classes, which, together with the translations, form

the 230 space groups,

The symmetry groups constitute the Schoenflies

T e s o e e

e U,

e,
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REFERENCES AND FOOTNOTES

1, The following treatment describes in a condensed form the basic con-

cepts and the notation required for further eyvmmetry considerations. For
detailed discussions on the subject, articles by P. P. Ewald (Handbuch der
Physik (Geiger~(Scheel), Vol, 24), Schoenflies (Theory of the Crystal Struc-
ture, Berlin (1923)), and Niggli (Geometrische Kristallographie des Diskun-
tinuums, Lelpzig (1919)) have to be consulted,

2. Reflection at the center (inversion),

3. Rotation, followed by reflection in a plane perpendicular to the axis of
rotation.

4. The index p denotes a p-fold axia, Symbolically, symmetry elements
and symmetry operations are not distinguishable, e, g., CP may describe

a p-fold axis or a rotation of an angle 2v/p.
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Chapter 18, The Vibrational Raman Effect and Molecular Symmetry,

1. Symmetry Properties of the Normal Modes of Vibra.tion.l |
&

To study the effect of molecular symmetry on the normal modes of vi-

bratien; one must set up the vibrational Hamiltonian. In terms of the normal !
coordinates, q, {
H=T+Vs= 1/2>— a2+ 1/22 w.zq.z, w, = 27V (18.1) ;3

B J i 3 J J i

/i

Since the q's are linear combinations of the position coordinates of the nuclei,

the symmetry operations represent linear orthogonal transformations of the

normal coordinates, By definition, the kinetic energy in (18,1) is invariant

with respect to these transformations, so that only the potential energy has
The latter must remain invariant with respect to the sym-
Hence,

to be investigated.
metry operations contained in the symmetry group of the molecule,

the normal coordinates of a symmetric molecule i3 separated into a number

of species, which differ from each other by their transformations under the

symmetry operations, ’
These normal coordinates are identical with the classes of eigenfunctions

introduced in Chapter 5. The possible transformation laws for the normal

coordinates and vibrational eigenfunctions are the same,

All of the symmetry groups possessa one type of vibration whose normal

coordinates are invariant with respect to all symmetry operations, During

these vibrations the symmetry of the molecule is retained, This type is

called "totally symmetric," The groups that contain two operations onlyz
(these are ¢, 1, and CZ) have two types of vibrations, The normal coordi-

nates of one are invariant with respect to the symmetry operations, while |

those of the other alter their signs, In the first case the vibrational config- I

uration remainsg unchanged under the symmetry operations, but in the latter
case the displacements of all points are reversed, Figure 7 shows an example

for a reflection plane,

a) Js b) 97 Q
C& Fa WY

d o RNt

Fig., 7. Eigenvibrations of a system having a plane of symmetry,

a) symmetric vibr'ation, b) antisymmetric vibration |
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For groups that do not have axes higher than twofold the vibrations
may be either symmetric or antisymmetric with respect to each symmetry
operation. Here the number of speclies is identical with that of the sym-
metry operations, '

Systems containing axes with p >2 are more complex, There are
normal coordinates which, upon rotation by multiples of 27/p, transform
into each other, and the corresponding vibrations are degenerate, Systems
having axial symmetry are doubly degenerate; the degeneracy of cubic sys-
tems 18 two- and threefold, and that of icosahedral systems is fivefold.

The types of vibrations belonging to. group Cp may be described by an
integer ¢, defined only modulus p. £ =0 and ¢ = p/2 (p even) correspond to
the totally symmetric and antisymmetric types, respectively, For the re-
maining values of ¢, the vibrations are degenerate, If, upon rotation by
2n/p, the degenerate normal coordinates £, n are combined into ¢ * in,

this quantity is multiplied by exp (- 2wit/p):
cp(g +in) = (£ + in) exp (- 2wit/p). (18. 2)

Since the choice of the sign of v i8 arbitrary but that of ¢ is not, vibrations
with ¢ and - ¢ are identical. "Hence, there are p/Z and p/Z - 1 vibrations
for p even and odd, respectively, Other groups will be given in subsequent
tables,

2, 8elosilen Rules, 3

The symmetry types of the normal modes of vibration are distin-
guished by their selection rules.

Reference to the general discussion in Chapter 5 will be useful in
arriving at the selection rules, According to the results given in Chapter
14, the matrix elements (ahp)v'v may be investigated, instead of the trans-
formation properties of the total elgenfunction and of the general tensor S\t
The traneformation properties are essentlally those of the vibrational eigen-
« The matrix element differs from

A

zero only when Uva)\qu, remalins invariant with respect to all operations of

the symmetry of the molecule.4 Let us consider as example the groups

function and the symmetric tensor a

that contain only one symmetry element (Ch' CZ' Ci)' Here the normal co~
ordinates and the vibrational eigenfunctions separate into two classes: sym-

metric and antisymmetric (temporarily deacribed by + and -, respectively).
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must remain invariant or change

Uv’ requires that a)\p_
be-

The invariance of U\’rukp.
its sign under the symmetry operation, depending on whether Uv and Uv'

long to the same class or to a different one, Because the components of a

are invariant to an inversion, only terms belonging to the same class com-
bine in the Raman effect for systems having a Ci symmetry, In casge of ab-

sorption (infrared), the tensor a is replaced by the vector M, and only terms

belonging to different classes combine. Analogous results have been derived

in Chapter 5 for the total elgenfunction, For group Ch' the reflection of the

tensor must be investigated, Choosing the z axis perpendicular to the plane

of reflection, we see that the components \ + p = 0, £2 remain invariant to
a reflection, while the components \ + yu = + 1 change signs, When the ten-

sor 18 expressed in terms of cartesian rather than circular coordinates, a ,
XX

Qs O, G'xy belong to the former, and a o'yz to the latter, class,
Therefore, for the Raman transitions + ¥ -, the selection rule \ + p = x 1
applies, and for the transitions + ~ 4%, the rule A\ + n = 0, +2 applles, In
absorption, the selection rules \ = % l(Mz = 0) and \ = O(l\/[x = My = 0) per-
tain to the transitions + - - and + - +, respectively, These are also the
gelection rules for CZ' because a tensor transforms, with respect to a re-
flection in a plane perpendicular to this axis; a vector behaves in an opposite
way, If the z axis is gselected as the axis of rotation, then in the Raman ef-
fect the selecticn rules are the same as for the reflection plane, whereas

they are different in absorption,
In addition, it 18 necessary to ldentify the class to which the eigen-

T

function of a given energy state whose quantum numbers are specified belongs,

According to (16.1), the vibrational eigenfunction can be approximated by the

product of the elgenfunctions of harmonic oscillators (the so-called Hermitian

polynomials), each of which depends on one normal coordinate, The eigen-

functions of a symmetric vibration remain invariant under the symmetry

operation (independent of the quantum number), since their argument {the

normal coordinate) does not change,

coordinates change signs, The Hermitian polynomials are even or odd

functions of the argument, depending on the even or odd character of the

vibrational quantum number, In the former case, the eigenfunctions of the

antisymmetric vibrations remain invariant also, while in the latter, the signs
The total vibrational eigenfunction is symmetric (antisymmetric)

are changed,
if the sum of the quantum numbers of the antisymmetric vibrations are even

(odd). 6

For antisymmetric vibrations, the normal

g o

e —

S—

e oS e o S

SO - Ty

e ——r gy
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From the above, the selection rules for any vibrations transition can
now be derived. For example, for Ci only those transitions are permitted
in the Raman effect (infrared) for which the sum of the quanta of the anti-
symmetric vibrations is even (odd). 7 Funldarnentals and overtones of sym-
metric vibrations can occur in the Raman effect, but those of antisymmetric
vibrations are forbidden. The selection rt}les for C2 and Ch permit all the
vibrations to appear in the Raman effect, ‘Individual components of the scat~
tering tensor vanish, a fact that becomes noticeable in the polarization (see
below) and in the rotational structure of the Raman lines (see Chapter 21),
particularly in the case of crystals,

The selection rules for more complex systems may be obtained in an
analogous manner, 8 The rules-apply rigorously and are not contingent
upon aasﬁmptions of harmonic forces, If the vibrations are strongly an-
harmonic, Eq., (16.1) no longer holds for the vibrational eigenfunction., It
was used only in establishing the clasa of the eigenfunction which cannot
be altered by anharmonicity and coupling. If the anharmonicity increases
to the extent that it is no longer meaningful to differentiate between funda-
mentals and overtones and to describe energy levels in terms of vibrational
quantum numbers, states belonging to different species can still be distin-
guished, and the selection rules for these transitions remain valid,

Asgide from these rigorous rules, there are approximate ones which
are of practical importancej they may be obtained from the polarizability
derivatives, but are affected by anharmonicity and by the higher-order termas
in the expansion, The rule derived in the preceding chapter falls into this
category, Here, the intensities of the overtones and combination tones van-
ish for harmonic forces and rapid convergence of the expression (16, 3).
Similarly, for vibrations of systems contalning symmetry axes with p >2,
the coefficient (ﬂa/B%)o may disappear, while some higher coefficients in
{(16.14b) do not; then the intensity of the fundamental is only approximately
zero. In practice, this approximation proved to be adequate in the arllalyses
of molecules investigated up to the present time, {

From the selection rules, important predictions can be made concern-
ing the polarizabilities of the vibrational Raman lines, According to (15.11) ‘
and (15, 3), they are determined by the relative values of the trace and quad-
rupole scatterings (anisotropic). If one of the two terms of the scattered

radiation vanishes, the depolarization factor and reversal coefficient have
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fixed values (see Table I, Chapter 6), The rules for the trace scattering may
be expressed in a general form, in contrast to those for the quadrupole scat-

tering, which vary from group to group. For the fundamental modes of vi-

bration, the following holds:
The trace scattering is forbidden for non-totally symmetric vibrations,

but it is permitted for totally Bymx;netri,‘c vibrations, This rule applies rig-
orously to vibrations that are antisymmetric with respect to at least one ele-
ment of symmetry, but only approximately to degenerate vibrations that do
not possess this property.

Proof; a) According to Chapter 6, only combinations of states belong-
ing to the same species give rise to trace scattering, Energy levels that
differ by 1 (in general, by an odd integer) in the quantum number, of a single
antisymmetric vibrations, belong to different species, This results from the
above discussed property of the Hermitian polynomials,

b) The approximate validity for other cases may be derived

as follows: The average value of the polarizability is

a= 1/3_Z NN

A\

whose matrix element determines the intensity of the trace scattering; in

the series expansion, only the linear terms are retained:

da :
a=agt Z (-—--—)0 ;e (18. 5)
J 3<.lj

Under a symmetry operation, the normal coordinate transforms into a linear

combination of its degenerate normal coordinates;

Sn ) qj = 2— cjr(n)qr' (18.6)
r
The index n refers to the symmetr&r operation, and the summation is carried
out over all the normal modes of vibration, If qj and q, are not degenerate,
cjr = 03 particularly, if the vibration j is not degenerate, cjr = 0 when j ;4 T
and c., can be either + or =, .
The coefficients cjr form an orthogonal system for a given n, and we

2 o M=0 (18. 7

have

—

et e R

s

e -
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for the non-totally symmetric vibrations, ? For the totally symmetric vibra-
tions, we have c, =§ ‘].
jr r
Since the scalar quantity a is invariant with respect to symmetry oper -

ations, it follows from Eqs. (18.5) and (18.6) that
da _ ; {n) da
E (5—— q, = E E c, Q.= » (18. 8)
e L r<an)O
which may be written in the form:
§ E da (n) da i ‘
q e C - [ = 0. (18. 8a)
r [i <6q.l)o Jx (”q’)o

Since Eq. (18.8) must be identical for all values of q,

Upon summing over the sy'n’xmfetry operations n of the point group, we see
that the right side of (18, 9) becomes zero for the non-totally symmetric q's

because of (18, 7) and therefore we obtain !

9 -
6%)0 =0, . {18.10)

The coefficient that determines the intensity of the isotropic scattering van=-
ishes, as a first approximation, and the polarization of the lines associated
with fundamentals of non-totallly symmetric vibrations is the same as that of
the quadrupole scattering, i.e., p = 3/4, Py = 6/7, P =6,

Because Raman lines associated with isotropic scattering are usually
stronger than those that are not, a qualitative rule may be deduced: The
fundamentals of the totally symmetric vibrations give rise to the most in~
tense Raman lines, For the totally symmetric fundamentals and overtone
vibrations of cubic systems, the quadrupole scattering vanishes. The same
holds for the quadrupole term of the unshifted scattered radiation, but if de-
generate vibrations are excited in the initial state, this will be only approx-
imately correct,

Proof: If the initial state i8 the ground state or one in which only non-
degenerate vibrations are excited, the total vibrational eigenfunction for the

initial and final states must have at least tetrahedral symmetry (see Table IX),
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For the product Uvo'Uv' to be invariant, a must also possess tetrahedral sym-

metry, In that case, a tensor is reduced to a scalar, and the isotropic part

will remain,

If non-totally symmetric vibrations are excited, the above statement
no longer applies strictly. To prove this, we must refer to the derivation
of the polarizability, It can be shown that the first coefficient (0,0, for the
unshifted scattered radiation; (80,/8qj)0, for the fundamental; (anq/aq.n)o.
for the (n - 1)th overtone) has cubic symmetry {isotropic), while the }{igher
terms, as for as degenerate normal coordinates occur, will be anisotropic,
This effect may be thought of as a distortion of the molecule by the vibration,
and may usually be neglected, 11 Therefore, for molecules having cubic sym-
metry, the Rayleigh‘lines, and the Raman lines associated with the funda-

mental pud pvertenes of totally symmetric vibrations, have

Tables IV - IX show the types of vibration and selection rules for the

fundamentals in a form that is useful for crystals also. The non-crystallo-

graphic point groups will be mentioned below, The point groups are arranged

according to crystal systems, Each table contains one crystal system, and

each row corresponds to one type of vibration,
into three paxts (I, II, and III}), Part I contains the symbols describing the

The columns are separated

types of vibration for the point groups (crystal classes) of the crystal sys-
termn, Additional details will be presented later, Part II contains the char-
acters for each type of vibration of the highest symmetric (holohedral) point
group. It gives the transformation laws of the normal coordinates for the

symmetry elements of the group, and for others which are listed in paren-
theses, This information may be derived from the preceding discussion,

but has been tabulated here for ready reference, The signs + and - denote

symmetric and antisymmetric, respectively, The remaining signs refer to

degenerate normal coordinates, With respect to each symmetry operation
and ordinary space coordinates, the three degenerate normal coordinates of
the threefold-degenerate vibrations of the cubic system transform with or
without a change in sign, indicated by - K or + K, respectively, For the
doubly-degenerate vibré.tionq’, the information refers to the linear combina-
tlon q = £ + in (4" = ¢ - in). ‘Here e*’ implies that £ + in is to be multiplied
by exp (- 271/3), and exp (2.1}1/3). The symbol * refers to the complex

7/

OV —
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Tables IV - [X of Chapter 18 were inadvertently omitted.

Tables IV - IX present symmetry species and selection rules for the

following point groups:

triclinic, monoclinic, rhombic, tetragonal,

hexagonal, rhombahedral (included in Table VII), and cubic.

Table IV, Symmetry types and selection

rules — triclinic point group

C.1 C1 i Raman Infrared
. 4 A R + v
b A T - v
X -
y -
z -
Table V. Monoclinic point group
CZh C Cs CZ (O‘h) i Raman Infrared
Ag A Al R, + + + xz=cyz=0 v
A A A T + - - v M, =0
u z L
" - - + =c__=0
Bg B A Rny i xy v
B B A' T T - + - v M =0
u VXY z
- + -
C2 X
- + -
O
i z + - -
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Table VI. Rhombic point group

—

Vh ' CZv CZ(Z) CZ(‘Y) oy i Raman Infraredl
Alg A1 Al + + + + Cik:O v
Alu Al A2 + + - - v v
Blg B1 AZ Rz + - - + cxy;fO v
B,, B Al T, | F - + - v szo
BZg B, B, Ry - + + + cxz;é v
BZu B2 B2 'I‘y - - - \Y My;f 0
B3g B3 B2 Rx - - - + yz’éo v
B3u B3 Bl 'I‘x - - + - \Y Mx;fO

X - - + -

y - + - -

z + - + -

7 S et e g 2.
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conjugate normal coordinate, and - g to the same coordinate with its sign
changed, The sign of * is arbitrary, but if it is given for one symmetry
operation, it wiil be fixed for all the others.12 An example may be cited:

If, in Table VII, the column CZ(Y) is designated by *, then in the o‘v(Y) col-
umn the E vibrations symmetric and antisymmetric to i are denoted by

and - *, respec{:ively, because of o'v(Y) = iCZ(Y). The descriptionlfor the
symmetry elements is summarized in Chapter 17, If a unique axis is present,
it is selected as the z axis, and the planes are characterized by an index

" giving the direction perpendicular to it,

The first column of Part Il gives the type of vibration to which the zero
frequencies, the translations, and rotations belong, The transformation
laws for the ordinary space coordinates are shown below, Part III lists the
selection rules for the fundamentals in the Raman effect and in the infrared
absorption; v denotes a forbidden vibration, The selection rules for the com-
ponents of the tensor (vector) associated with the fundamentals are of im-
portance for the rotational structure and for crystals,

For the nonholohedral point groups, the vibration types and selection
rules are obtained by considering only those symmetry elements that occur
in the particular group. These are designated by points in the lower section
of Part I, Several vibration types of the holohedral point group will coincide,
but those components occur that are permitted in at least one of the coincid-
ing holohedral types, In Part I the vibration types of the holohedral class
are correclated with those of the hemihedral one, For each holohedral type,
the symbol of the vibration type into which it is transformed in the hemi-
hedral groups is given,

As example, the selection rules for S4 are presented, Table VIJ,

column S4 lists the symbols A, B, E,several times, The selection rules

for A are; c = Cry = 0, v, v, vjfor B; c = - Sy #0, Sy # 0; for E;
Cii = cxy =0, cxx = Cyz' v. Hence, for 84, we have

A Cox = ny' Cik = 0

B Coux = = cyy' czi =0

E ¢,,=c _=0,¢c =c




\
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The transformatioﬁ laws of the three vibration types are obtained by consider -
ing, in Table VII, Part II, only the columns that correspond to the symmetry
elements of S4, which in this case is S4. For more complicated systems,
the symmetry elements must be obtained from the point groups in the col-
umns at the lower left,

The symbols are chosen so that the characteristic symmetry elements

stand out clearly, Symmetry with respect to a unique axis is indicated by A;

for groups that do not have such an axis (Vl, Vh’ and the cubic groupx&t),1

it refers to symmetry with respect to the three mutually-perpendicular two-
fold axes, Antisymmetry with respect to a unique axis (for V and Vh, anti-~
symmetry with respect to two of the three twofold axes) is indicated by B,
and E and F represent two- and thfeefold degeneracy, respectively. Sym-
metry and antisymmetry with regard to the remaining symmetry elements

are designated as follows:
refer to a center of symmetry, i

g, U
1o refer to ¢ (in case of several planes, the one perpendicular
to the unique axis is chosen),
+ - refer to Cz(z) (necessary in case of degenerate vibrations),
In

If there is another symmetry element present, another index is added.
particular, ¢ will'distinguish between the remaining independent symmetry

element, ) -
The vibrations denoted by g(u) are forbidden in the infrared (Raman

effect), A symmary of these rules is presented at the end of this chapter,

So that the selection rules can be applied to molecules, it is necessary to
investigate the distribution of the vibrations of a given molecule among the
various symmetry types and the number of vibrations of each type, This
number is determined by the eigensymmetry of the specific point groups,
Liet us consider a molecule belonging to group Cs' There are points
that assume a general position and those that lie in the plane (Cs)' Since
the aumber of vibrations is independent of the force field, the vibrations

may be thought of in such a way that only equivalent points move and the

others remain at rest, Equivalent points refer to nuclei that are transformed

into each other by symmetry operations; molecules of CS gaymmetry have
general sets of nuclei, which consist of two points each, and sets of points
that involve one nucleus each, If we consider a general set and assume the
displacement of one nucleus, then the displacement of the equivalent nucleus

follows, The vibrations are thereby established from the transformation

e e e e

e Y NS
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laws of the different types of vibration, For the symmetric ones, the dis-
placements are reflected, while for the antisymmetric ones, in addition, the
sign must be changed (see Fig, 7), Since the first point has three degrees of
freedom, each general set of nuclei contributes three vibrations of each type,
The sets of points of Cs consist of one point each, lying in the plane, This
point moves in the plane and perpendicular to it, for symmetric and antisym-
metric vibrations, respectively, Hence, it has two degrees of freedom in
the plane and one degree of freedom perpendicular to the plane, and each

. set contributes two vibrations to the symmetric type and one vibration to the
antisymmetric type, The total number of vibrations obtained in this manner
does include the translations and rotations which have to be subtracted even-
tually.

The following generalization applies to groups that do not contain de-
generate vibrations (triclinic, monoclinic, and rhombic systems),

In a system of symmetry G, the number of vibrations of each set of
points of symmetry g which contributes to each type G.j is egual to the num-
ber of independent linear combinations of the space coordinates (x, y, z).
These transform, with respect to the operations of g, in the same manner
as do the normal coordinates of Gj' In the preceding tables, the trans-
formation laws for the space coordinates are always given below those for
vibrations, '

Example: Ethylene, CZH4' (Fig. 9) has the symimetry Vh (Table VI).
The H atoms lie in the plane of symmetry (xz plane) and have the symmetry

(z)

Cs(o‘y); the C atoms also lie on the twofold axis, and their syinmetry is CZv . |
Let the z axis be the figure axis, and let the xz plane be the plane of the mole- Z
cule; then for C_ the symmetry element is ¢_, and for CZV' we have Cz(z)

and O‘y .14 The ¢ column of Table VI shows a plus sign for x and z, and a

minus sign for y. Therefore, the H atoms contribute two vibrations to the
+, and one vibration to the - types, For the C atoms, the two columns Cz(z)
and ¢ have to be considered,

ySince the contributions of the translations and rotations are included
in the tables (in the first column of Part II}, they must eventually be sub-

tracted, and the following results are obtained;
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Two kinds of degenerate vibrations mu_ét be distinguished before the above
rule can be extended to groups.containing degenerate vibrations.15 For one
kind, it is possible to seledt the normal coordinates iﬁ such a manner that
they do not transform into each other under the symmetry operations, while
for the other kind this is no longer possible. 16 The vibrations of C_ and C h
belong to the former, and 't;‘hc'zse of C v and Dp to the latter kind. Tll)me firstp
are called "separable degenerate,' and the latter 'inseparable degenerate, "
This distinction arises from the fact--not proven here--that for the separ-
able-~-degenerate vibrations thé dynamics of a general set of nuclei is deter-
mined uniquely by the diéplacéments of f points (f degree of degeneracy) and’
the type of vibration, whereas for the inseparable-degenerate vibrations f
possibilities remain, H?m‘:e.' the following addendum applies:

If the type G, 13 separable degenerate, the above number must be di-
vided by the degeneracy.; If the eigensymmetry g contains inseparable-
degenerate types of vibrétion. the space coordinates that transform like the
degenerate normal coorciin_ates of this vibration type should be counted as one.

For instance, eac}i general set of nuclei contributes to a separable-~
degenerate type of vibraf._o'n 3 and to"aln inseparable-degenerate fype 3f vibra-

tions, The separable-d gehérate types of vibration {these are the twofold-

degenerate types of the éroups CP, Cph' Sp' T, and Th) are underlined in
the above tables, {
Examples: ' ‘

1. NH, having pyramidal symmetry, C The types of vibration as

3 3v*®
listed in Tables VIII or VIlIa are:
C3v ' C3 o, Rand T
! ; + + T,
2 -t ) Ra
1 #
z + +
- *
x + iy e 1
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Symmetry for H: Cs(o'v); for N: CSV' If we consider the N atom (G = g} and
remember that the sign of * is arbitrary, there will be 1A1, OAZ' and 1E vi-

brations {since E is inseparable degéneréte, x + iy and x - iy count as one

coordinate),
For the H atom, the o, column must be examined. Since the symbol *

can be represented as linear combination of + and -, there will be ZAI, IAZ.

and 3 E vibrations, Upon subtracting the rotational and translational modes,

we obtain:

C3'v ()‘i T and R Result
A1 1 2 1 2
2 0 \ 1 1 0
1 3 2 2

2., Planar benzene (Fig. 10), assuming Dbh symmetry, The eigen-
symmetry for the C and H atoms is sz. {The extent to which this sym-
metry corresponds to the actual molecule is not discussed here,)

The columns CZ(Y) and o'v(Y) of Table VII are employed here, so that

the transformation law of the gcoordinates becomes:

{y) (y)
c, a, -
y + +
X - JL, | t
z - -

The results may now be summarized as followa:

e e g

e £,

T e
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D6h C3v T and R Result
Alg 1 2
AL 0 0
Azg 1 1 1
A, 1 1 1
Blg 0 0
By 1 ‘ 2
13Zg 1 2
B, 1 2
oM 2 4
g :
EY 1 2
u
E- 1 1 1
g
E- 2 1 3
u

3. Octahedral molecule XY6' (SbCl6 presumably belongs to this sym-
metry group.17 Symmetry Oh' Symmetry for X: Oh; for Y; C4v:

a) Oh: According to Table VIII, the transformations of the coordi-
nates accord with those of the normal coordinates for Flu only, The point
0, contributes one vibration to this type, Since ¥, is inseparable degenerate,

h
the three coordinates are counted as one,

lu

b) C vt The symmetry elements are C and ¢, The transforma-
tions for g_ are not given explicitly; they may be derxved from C () and i

by the relation o’y =1 C (Y) The following results are then obtained:
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0h C4 o"y C4v Oh T and R Regults
A + + 1 1
lg
A e - 0 0
lu
AZg - + 0 0
AZu - -' 0 0
E * + 1 ]
& *
E - 0 0
u
+ - i :
Fl -1 * 1 | 1 0
g i "
+ + .
F1 -1 e 2 1 1 2
u i e

2u

z o+ +
"
x + 1y -1
%
x - iy +1

=S

Because the E vibration of C4v is insé_parable degenerate and the coordinates
x + iy and x -~ iy transform like the normal coordinates, x + iy are counted as

one, By adding the vibration F a due to X, and subtracting the rotations and

1
translations belonging to Flg and Flu' we obtain

T = lAlg +1 Eg + ZFlu + lFZg + IFZu'

SO




~121- UCRL Trans No, 526 (L)

A simpler method may be employed for examples 1 and 3 when the vi-
brations contributed by the totally symmetric point group are subtracted as
translations. They may be omitted initially, so that only the rotational de-
grees of freedom need to be subtracted at the end,

No distinction is made in the tables between the rigorous and the ap-
proximate selection rules as this is not of practical importance, It is suffi-
cient to know that the rules apply strictly when at least one of the states for
a given transition is nondegenerate, for example, when one of the two states
is the ground state. The rules are always valid for the point groups that do
not possess any degenerate vibrations (triclinic, monoclinic, and rhombic
systems),

In addition, the selection rules for the over - and combination tones
may be deduced from the given tables, The characters of the particular
species are multiplied and the row having the characters of the resulting
products gives the new symmetry species, A different procedure applicable
to degenerate species has been outlined by Placzek and Tisza, The selec-
tion rules for the Raman effect and the infrared spectrum are correlated in
the above tables, For systems containing a center of symmetry, the mutual
exclusion rule applies. This rule was derived in Chapter 5 and holds also
for the group 0. In the remaining groups, transitions occur that are permitted
in the Raman effect as well as in the infrared spectrum but complete agree-
ment between the selection rules exists for the C3v group only, 18

The preceding tables have to be supplemented by the non-crystallo-
graphic point groups, by the axial groups for arbitrary values of p, and by
the icosahedral group, because these can be realized for molecules also,
The most important results are presented here, but details may be found in
the papers by Placzek and Tisza,

The transformation law for the vibration types of C_ was stated at
the beginning of this chapter:; upon rotation by Zn-/p, the normal coordinates
are multiplied by exp (- 2wi4/p), where the degenerate normal coordinates
are combined linearly to give q = £ + in. The symmetry type is determined
by the integer #; for ¢ = 0, p/2, the vibrations are nondegenerate (symmetric
and antisymmetric). The degenerate vibrations may be described by a
linear combination of one-dimensional oscillators (in the normal coordinate
space): these are assigned a main quantum number vj and an azimuthal quan-

tum number sj. The energy depends on vj only, and sj = v‘j e e o = vj giving
4
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even (odd) values for even (odd) values of vj. If an azimuthal quantum num-
ber is formally introduced for the nondegenerate vibrations by putting Bj = Vj’

then the selection rule is given by:

x+u\=z:p-z!(9-'-8). orabes L (18.11)
AR 1 :

where z is an arbitrary number, For even (odd) transitions in 'vj, sj' -8,
is even (odd)., .
The gelection rule for the fundamental (Av‘j = 6r‘l) of the r vibration,

where the initié.l state is identical with the vibrational ground state, is

8; = 0, Bj' = 0} for i T, Bj‘-= + 1, Since ¢ is. defined only module{;’f we
have
Nbp= g ‘ (18,12)
The fundamentals occur only for the vibrations with ¢ =0, 1, 2, be-

cause \ + L £ 2, 19 If the initial state is different from the ground state, then

Eq. (18.12) is approximately correct, 20

The general rules may be derived for the more complicated axial

groups Cph’ va, DP, Dph' For SP. Eq. (18.12) is replaced by
N4 4 f .
i 1+ p/2

Linear molecules are of particular importance. They belong to the group
Doov and Coov' depending on the presence of a center of symmetry, For
these groups there is an infinite number of types of vibrations, Since linear
molecules possess at least Coov symmetry, the possible types of vibration
reduce to those given in Table X, For types A and B, the nuclei vibrate
parallel and perpendicular to the axis, respectively,

Finally, the results that are most commonly used and that have been

dealt with in this discussion are summarized in Table X,
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Table X
The Types of Vibration for Linear Molecules,

—~—

Dooh Coov Coo o, i Raman Effect Infrared
A A + + + C =c¢c_, ¢, =0 v
g XX yy' Tik
Au A + + - v M..L =0
E B e_":l(b * + c = C =0 v
g xZ Yz :
E E cFlo * - v M =0
u z
z ¥ + -
x + iy ol ¥ -
x + 1y ei¢ * -

1. Polarization Rule; ;

a) Raman lines as sociated ‘with non-totally symn:ﬁetric fundamentals
have a depolarization factor p = 3/4, p = 6/7, and P =j6.

b) The depolarization factor of Raman lines due to totally symmetric
vibrations is zero for molecules of cublc symmetry, ﬁ‘or noncubic mole-
cules, p is not determined by symmetry and may vary:f;between zero and 3/4,
Therefore, in the first case p = Py = P =0, and in the; latter case 0 < P, S 6/7;
0<P <6, .

c) The depolarization factor of the Rayleigh sc;ttering is zero for
molecules having cubic symmetry, For the other mol_--ecules it is independent

of the symmetry of the system, .
0<p <1/3, 0<p, <1/2, 0 <P <L,

2, Selection Rules: _{

In the Raman effect the following fund;mentals are forbidden;

a) In general: vibrations that are antisymmetric with respect to a
center of aymmetry,

b) Tetragonal system: vibrations not totally symmetric with respect
to the fourfold axis,
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Bl

c) Hexagonal system: nondegenerate vibrations, except for the totally
symmaetric ones, _
d} Cubic systemt nondegenerate vibrations, with the exception of the

totally symmetric ones; the threefold-degenerate vibrations, except for one

type.

The remaining vibrations are perritted, 22

3. Intensity Rules: .
a) Over- and combination tones are rather weak in the Raman effect,

b} The most intense lines usually correspond to the fundamental modes

of vibration,

9

4. The Number of Normal Modes of Vibration:
For a given molecule the number of vibrations of each species is given

by the symmetry of the individual points and is derived by the rules outlined

in this chapter,

T ———

e T
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REFERENCES AND FOOTNOTES
1. Brester, Krystallsymmetry and Reststrahlen (Diss, Utrecht (1923);

Placzek, Leipzig Lectures (193l)), p. 71 Group-theoretical treatment:
Wigner, Gottinger Nachrichten 1930, p, 133,

2. one of which is the identity. ]

3. Placzek, Leipzig Lectures (1931), p. 71; Cabannes, Ann, phys. 18, 285
(1932); Group-theoretical treatment: Tisza, Z. Physik 32, 285 (1932);
Placzek, Z. Physik (to appear toward the end of 1933).

4, See Reference ll, Chapter 5 concerning the degenerate states,

5. Tensor components transform as the products of the coordinates, which
appear as their indices,

6. For groups containing several elements of symmetry (except an axis
with p > 2) the above rule applies to each symmetry element separately,

The symmetry type of the eigenfunction is determined by the transformation
properties under the operations of the group.

7. If additional elements, aside from the center of symmetry, exist, the
exclusion is vlid; the number of permitted transitions can be further restricted.

8. The fo),l;)wing procedure for deriving the selection rules is more com-
plicated, but-permits a simple correlation with the classical case (the limit-
ing case of high vibrational quantum numbers):

We start with a molecule in equilibrium position (Fig. 8, I); the polar-
izability is invariant with respect to the operations S of the symmetry group
of the molecule: '

S(o,)\p.)0 = (O'M«l)o. (18. 3)

Equations (18. 3) require that some components (a)\ )0_ vanish, For ine
stance, the polarizability ellipsoid will become a rotation ellipsoid about
the axis, provided an axis of higher than twofold symmetry exists,

For arbitrary displacements of the nuclei (Fig. 8, II), the symmetry
is destroyed. The position of the nuclei and the polarizability are altered
by a symmetry operation (¥Fig, 8, IlI). The results obtained are the same,
whether the symmetry operations are applied to the displacements (to the
polarizability of the distorted configuration) or to the polarizability of II di-

rectly., In both instances, configuration III is generated,
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If the displacements of the molecule are denoted by the normal coordi-

nates ql, qZ « o o qn.

S“}ia)\p.(ql' Ay e o+ qn) = GML(S 'y S - q2 e o o« S qn) (18. 4)
——_
&0 !
111

Fig, 8, Symmetry properties of displacements,
and polarizability of a distorted molecule,

Equation (18, 4) causes a serie\s of tensor components to vanish when,
classically, the Fourier component or, quantum mechanically, the matrix
element of GMJ- is formed, This results in the above selection rules, For
example, let us take the reflection plane, Denoting 9, and q, a8 the sym -

metric and antisymmetric normal coordinates, respectively, we see that

Eq. (18,4) becomes

aw(qs.. qa) = aw(qs. -q ) for A+ =0, 2 (18. 4a)

g u{dgr 9) = oy (g -q,) for M+ =& L. (18. 4b)
Each normal coordinate is classically a simple periodic function of the time,
with a period equal to the vibration frequency. In the Fourier expansion of
(18, 1), the term corresponding to this period {fundamental) vanishes for the
antisymmetric vibrations, The relation \ + . = 0, +2 applies to the former,
and X + o = +1 to the latter; this is in accord with the above result and has
the following significance: For the symmetric vibrations, the polarizability
remains symmetric with respect to the plane, leaving two principal axes of
the polarizability ellipsoid in the plane, For the antisymmetric vibrations,
the ellipsoid vibrates out of the plane, The identical result is obtained when

the matrix element of (18, 4a) is formed and when the above-discussed prop-

erties of the Hermitian polynomials are taken into account,

..

e st b
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9. This may be illustrated in the following manner: Let us consider a mole-
cule of a given symmetry and assign arbitrary displacements to the nuclei,
thereby destroying the original symmetry, When the operations of the mole-
cular symmetry arc applied consecutively to the distorted molecule, and
the displacements are added, the resultant should have the original symn.'\etry,
The displacements can therefore be represented by the totally symmetric
normal coordinates only, If the original displacement is chosen so that ;t
corresponds to a non-totally symmetric vibration, containing no totally sym-
metric component, the displacements will be zero under the proper symmetry

operations:

}; er(n) = 0.

10. We may proceed for instance, by writing out relation (18.4) for all the
operations of the tetrahedron with the derivation of the polarizability ex-
pression,

1l1. The intensity of the quadrupole (anisotropic) term of the undisplaced
scattered radiation is a maximum (for a high population of the excited de-
generate states) and is of the same order of magnitude as the intensity of
the first overtones of the degenerate vibrations,

12, This arises from the fact that the two degenerate normal coordinates
described by £ and n were not identified, Therefore, it is equally possible
to employ the coordinate q' = iq, instead of q = £ + iy, If Sq is equal to q*,

we have
* b
S5q' =1i8q =iq = -(q') .

13, in addition, CS; symbol A is used as basis for the indices ! and ",

14. In more complicated cases, the required symmetry elements should

be indicated at the lower left corner of the tables,

15. G. Placzek, Z. Physik (to appear in 1933).

16. Expressed differently: In the first case, the linear transformations
corresponding to the symmetry operations can be made to coincide with the
principal axes, but this cannot be done in the latter case, From the group-
theoretical point of view, only the latter case is an ""essential' degeneracy.
17. O. Redlich, Naturwiss, 20, 365 (1932),

18. For groups for which transitions are permitted, in the infrared spectrum

CZ' and C3.

and in the Raman effects Clh’
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19, As was shown initially, the sign of ¢ is not significant here,

20, It applies strictly if at least one of the two states is degenerate,

21, The term exp (3id) implies that, ixpon rotation about any angle 4, the
~expression £ + in is to be multiplied by exp-(i¢), and £ - in by exp (i¢).

" 22, This summary applies to the crystallographic point groups only. As

was shown above, there are further exclusions for non-crystallographic

groups.
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Chapter 19. Simple Vibrational Spectra

Some representative vibrational spectra are discussed, by using exper-
imental data of liquid samples, The theory of free molecules applies to
these cases in first approximation only; some modifications are presented in
Chapter 20.
1. The XYB Molecule,

Two symmetry groups will be considered: the pyramidal CSv and the

plane D symmetries, The C3v group has two totally symmetric eigenfre-

3h

quencies, A, and two degenerate ones, E, Both are permitted in the infra-

1

red and Raman, The D3h has one totally symmetric A! vibration (X does

not move while the Y3 triangle expands symmetrically) which is infrared in-
active, one A'" vibration antisymmetric with respect to the plane of the mole-
cule (X moves along the axis, and the three Y particles move in the opposite
direction perpendicular to the plane and symmetric with respect to the tri-
gonal axis), which is Raman inactive, and two E! vibrations, degenerate
with respect to the plane, which ar; Raman and infrared active.l Conse -
quently, a C3v molecule should have four Raman lines, and a D3h should
have three strong lines of which two are expected to be completely depolar-
ized, with p = 6/7 in both cases, |

The data of a series of trihalides possessing four Raman lines are

2

summarized in Table XI,” The depolarizatioﬁ factors have been observed

by Cabannes and Rousset, 3

Table XI

Depolarization Factor of the Raman Lines of Some Trihalides,

PBr, PCl, : AsCl,
v,cm:l Py , v,cm Py v,cm_l P
116 0.86% 190 0. 86 158 0. 86
162 0.185 258 0.28 194 0,42
380 0,28 484 0.86 370 0. 86
400 0.86 " 511 0.16 405 0.08

Assignments on the basis of analogies must be made with great care (a rear-
rangement of frequencies is observed for PCl3 and PBr3). For instance, in

3

the case of PCl, the highest frequency is totally symmetric, while for PBr3
it is degenerate, .
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The ions NO3

Solutions of nitrate salts show three Raman lines, a strong one at 1049 cm

and two weak ones at 720 and 1360 cm-l. 5 The depolarization factor of the

" and CO3: are planar, as was deduced from experiments,

{first two lines was determined;6 the 104:9-cm-1 line was found to be polarized
and the 720-cm-1 line depolarized, Therefore, the 104:9—cm_l line is ascribed
to the totally symmetric vibrations, and the other two lines to the degenerate
vibrations, A strong band, observed near 830 cm-1 in the infrared but not
in the Raman spectrum, may be due to the antisymmetric vibration forbidden
in the Raman effect, The CO3: 1ion exhibits similar spectra, but in solution
only one strong line at 1065 cm ™ has been noted, Because the depolarization
factor was found to be 0, 2, 7 it may be attributed to the totally symmetric
vibration, , ‘ .

These conclusions are reached on the basis of Raman spectra of the
carbonate and nitrate crystals which slrxow,I aside from permitted ground-
state frequencies, the first overtone of a vibration whose fundamental is for -
bidden., These results accord with investigations by Schaefer, who reported

extensive infrared data on crystals prior to the discovery of the Raman effect,

2. The Molecule XY3Z (X and Z along the symmetry axis) Having C?’v
Symmetry,

According to Table VIIla, three totally symmetric A vibrations and
three degenerate E vibrations are permitted in the Raman effect and infra-
red spectrum, Many carbon compounds belong to th.is group (CH3 - X,
CCl, - X, etc,) as well as POCl3 as may be concluded from its Raman

3
spectrum,

Table XII
Depolarization Factor of the Raman Lines of CHC13.

1

ycm’- 259 364 664 756 1214 3016

Py 0,87 0.19 0.07 0. 86 0.87 0.20

The spectrum of CI—ICl3 can be cited as an example.lo Six lines are
observed, 11 The depolarization factors in Table XII show that the lines at
364, 664, and 3016 crn"1 may be ascribed to the totally symmetric vibrations,
and those at 259, 756, and 1214 cm-1 to the degenerate ones, The data

R
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obtained by means of circularly polarized incident light are in good agree-

ment, 12 The first three lines are polarized.in the same sense, and the last

three in the opposite sense,

3. The Molecule XY, .
Three configurations must be considered: the tetrahedral, pyramidal,

and phs.nau'.13 We have the following classification of the eigenvibrations;

a) Tetrahedral Model, Ty

Type Z Raman; Pn Infrared
Al 1 - 0 v
E 1 6/7 v
F, 2 6/7
5 4 2

b) Pyramidal Model, C4v

Type Z Raman, Pn Infrared .
A1 2 MJ_-' 0
By 2 6/7 v
B, 1 6/7 v
E 2 6/7 M, =0
7 7 3

el e s o] T . TP —
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¢) Planar Model, D

4h
Type Z Raman, Py Infrared
Alg 1 v
Ale 1 v ML =0
Blg 1 6/7
B,y 1 6/7
BZu 1 v
Eu 2 v Mz = 0
7 3 3

The Td model has four Raman lines, of which one will have Py = 0
and three will have Pp = 6/7. The C4v molecule shows seven lines, of
which five will have p = 6/7, and the D,

two of which have P ='6/7. For Td the totally symmetric type is permitted

model has three Raman lines,

in the infrared spectrum, but for C4v it is forbidden, and for D4h the mu-

tual exclusion rule applies, -
The majority of molecules investigated possess tetrahedral symmetry.
The spectra of the tetrachlorides XCl4 (X = C, S8i, Ti, Sn) consist of four

lmef-x,1 of which three have p = 6/7, while the strongest line (totally sym-

metric) has a value of Pn close to 0.05.16 Cabannes and Rousset attributed

the deviation from zero to an isotope effect. From known chlorine isotope
distributions (Cl35 : 0137 = 3,185 : 1), 17 it is assumed that 66.2% of the mole-
cules XCl4 contain different isotopes:

xct,>? T 33,59
xc, e’ 42, 2%
xc1, e, 7 19, 8%
xc:135c1337 4. 2%
xc1,>? 0. 3%

14

e bty




~133- UCRL Trans No, 526 (L)

The symmetry of the mixed chloride is no longer tetrahedral, a fact
that explains the depolarized totally symmetric Raman 1ine.18 In addition,
Langseth showsad a splitting of the line (see also Chapter 22 and Reference 10
of Chapter 23). To ascertain whether the total depolarization of 5% entails
an isotope effect, one should investigate the tetraiodo compound, which can-

not show any isotope effect,

4, The Molecule XYZ.
If the Y atoms are equivalent, two models are possible: the equilateral
triangle, CZV’ and the linear structure, Dooh' For nonequivalent Y atoms,
a CS (scalene) or a Coov (linear Y-Y-X) structure is possible, The types
of vibrations are described in Table XIII,

Table XIII
Normal Vibrations of the Molecules XYZ'

c C C D

8 2v vV ooh
A : Y
\ | |
YN AN i i
X Y
A 3 2 A 2 1 |
Al g 1 1g
B1 1 1 lu 1
1
u

For all the molecules, with the exception of the D the vibrations are

ooh'’

Raman and infrared active, The sz and Coov molecules have one frequency

with a depolarization factor of 6/7. Both exhibit the same vibrational spec-
trumj however, the rotational structures of their infrared bands and Raman

lines are distinct, The Doo molecule has two vibrations which are antisym- l

h
metric with respect to the center of symmetry and consequently Raman in-

active,
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a) SOZ' ThelRaman spectrum of this molecule has three lines: 1340,
1146, and 526 cm . The depolarization measurements by Cabannes and
Rousset indicate that the depolarization factor of the 1340—cm_1 line has a
value of 6/7.19 This observation would lead to an equilateral triangular model,
This structure confirms the one reported by Mecke21 and by Placzek, but dif-
fers from earlier ones.22 The asymmetric linear model has already been ex-
cluded on the basis of its chemical behavior,

b) NZO‘ Plyler and Barker demonstrated, on the basis of the rotational
structure of the infrared bands, that this molecule has a Coov symmetry,
N-—-N—O.'23 The linear structure was deduced from the rotational levels and
the asymmetry was deduced from the absence of alternating intensities. Plyler
and Barker observed the fundamental frequencies at 2224.1, 1285.4, and 589.1
cm_l, the latter corresponding to our E-type vibration,

In the Raman spectrum the fundamentals occur at 2223,2 and 1286.5 cm_
After exposing the sample for 14 days, weak lines associated with overtones
were observed which accord with Plyler and Barker's observations rather
than with the permitted fundamental of the degenerate mode,‘?'s'26

The. NZO molecule illustrates very well that symmetry considerations
cannot be applied rigorously to the determinations of molecular structure,

It is important to note that some molecular configuration can give rise to an
approximate symmetry which can decide the structure of the spectrum., The
only Raman line observed for NZO by Dickinson—Dillon—Rassetti27 wasg be-
lieved to be a confirmation of the symmetric model N-O~N by Placzek,
This had also been deduced by Snow from infrared studies, absence of any
dipole moment, and the approximate magnitude of the frequencies.Z Because
N and O possess very similar masses and electron configurations, even the
asymmetric configuration is expected to have a small dipole moment., The
‘normal modes of vibration and the derivatives of the polarizability components
will be symmetric and antisymmetric with respect to a (fictitious) center of
symmetry, thereby reducing the intensity of two out of three fundamental fre-
quencies, Additional infrared and Raman studies proved that the asymmetric
structure is the correct one. It has not yet been established whether the ab-
sence of the degenerate vibration is caused solely by the pseudosymmetry,
or whether there are other contributing factors,

c) COZ' CSZ' These molecules are linearly symmetric, However,

their Raman spectra indicate complicating features which will be elaborated

~on in the next chapter,

1

24
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5. The Linear Molecule XZYZ
The Dooh symmetry group gives rise to two A _ vibrations, one A , one
u
Eg’ and one Eu. The mutual exclusion rule applies because of the existence

of a center of symmetry,

1975 em™! oO—> %5 < ° <o Ag
-1 Q N ¢

3370 cm o> A >—&—o0 Ag
-1

3277 cm o—> &2 : e oy A

o>
=1

600 cm ™ —/L '
{

729 cm™t i i -3 =

Fig. ll. The normal modes of vibration of acetylene, CZHZ'

The acetylene molecule belongs to this group. Figure 11 represents
the fundamental frequencies and assignments, as given by Mecke from
infrared and Raman spectra, 3 The totally symmetric frequencies 1974 and
3372 cm"1 appear in the Raman spectrum, while the E_frequency near
600 cm-l was not detected, 32 These observations lead to the conclusion
that the polarizability of CZHZ is not greatly influenced by the transverse.

displacements involved in the stretching vibrations (see Chapter 24). t

6. Cis~-Trans Isomers,

At times, qualitative observations may lead to structure determina-
tions; the cis~trans isomers CZXZYZ may be cited as such an example (see
Fig. 12).
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/
O
/c\
4 . b

Vs

Cis

Trans

AVZERN
VAN

Fig, 12, Cis-trans isomers of the molecule CZXZYZ'

The lower frequencies are particularly sensitive to the geometric configura-

tion of the molecules, Distinguishing between the two isomers on the basis

of their spectra, however, is rather intricate, even when all the frequencies -

are known, as the latter depend greatly on the characteristic force field, An
analysis of the molecular symmetry yields the following information; the

isomer has the CZh symmetry, thereby permitting all frequencies to appear

in the Raman spectrum. The trang isomer has the CZv symmetry, with a

center of symmetry, One-half c¢f the vibrations are antisymmetric, making

the fundamental frequencies inactive in the Raman effect, Hence, the cis
isomer will show a richer spectrum than the trans isomer. Kohlrausch and

his co-workers arrived at these conclusions independent of theory, on the
basis of extensive experiments, They adjudged this method of identifica-~
tion as powerful as the measurements of dipole moments, Chemical means
do not always permit unequivocal differentiation between two isomers,

The complete assignments of the spectra of simple cis-trans isomers
(CHZCIZ, CHZBrZ) have not yet been achieved, A knowledge of the depolar-

ization measurements would materially aid in these assignments,

e e g ST
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Chapter 20. Vibrational Spectira of Perturbed Systems

Anharmonicity in molecular vibrations gives rise to a shift of the vi-
brational level as calculated for a harmonic force field, and a mixing of the
cigenfunctions, These effects are computed with the aid of the perturbation
theory. The modified terms and eigenfunctions may be derived from the
matrix elements of the perturbation energy (this is given here by the higher
terms in the potential energy expression) and fror the frequencies of the
unperturbed :Wstem.1 The calculafions can be simplified by making use of
the fact that "only terms of the same symmetry type can perturb each other,"

Proof: Energy shifts and mixing of eigenfunctions are both determined
by the matrix elements of the perturbation energy which has the symmetry
of the molecular system. The matrix elements of such a quantity are differ-
ent from zero for terms of the same species, as was demonstrated in Chap-
ter 5 in the derivation of the selection rules for the trace scattering.,

The terms of each species can be treated separately since only these
eigenfunctions mix, Additional limiting conditions arise in the first approx-
imation of the perturbation energy, If the cubic terms in the potential-
cnergy expression are considered, terms differing by not more than three
vibrational quantum numbera (distributed over 1, 2, or 3 normal vibrations)
will perturb each other. In the scattering spectrum, this perturbation
causes a shift of the frequencies compared with those calculated by Eq. (16, 2),
and a change in the intensities. In order to perform the computations the
matrix elements of the polarizability are formed with the aid of the perturbed
eigenfunctions, )

The perturbed eigenfunctions are linear combinations of the unperturbed

‘oscillator eigenfunctions:

[qJ] ) Z va'qu' * 1 (20.1)
v v

!
The coefficients C,yt €3N be evaluated using perturbation theory and

will become zero for all the states belonging to different symmetry types:

v v
*
= c c 20.2
[Q]v' g 6:” vyt viyit (u)v”' ’ ( )
where [a] v'v and (u)v,V denote the perturbed and unperturbed matrix ele-
ments, respectively, If the diagonal terms c,y are large compared with the

off-diagonal ones, which is generally true, then Eq. (20.2) may be written:



~140 - UCRL Trans No. 526 (L)

] t
\4 * vt

' \4 % \4 *
[a]v' = CyyvCyr vt (o‘)v' Ty Z” Cyty (a)v” g z va"(a)v' :
' M v (20. 3)

viEv vy

X According to (20, 3),. the intensity of a (permitted) overtone or combination
tone v - v! changes when the perturbed eigenfunction [\p} v containsg the
eigenfunction of a term that differs by 1 from the term v in the quantum
number of a single normal vibration, 2 Then, a matrix element correspond-
ing to a fundamental will occur in expression (20.3), It is usually larger
than the matrix element associated with the overtone or the combination
tone, The intensity can change markedly when the ground state eigenfunction
is contained to a small extent, only in ¢v, . For normal anharmonicity, its
effect upon the intensities of the combinations and overtones is of the same
order of magnitude as the effect of the nonlinearity of the polarizability
which was considered in Chapter 16,

Term shifts and mixing of eigenfunctions attain importance whenever
terms are accidentally so close that their spacing is of the order of magni-
tude of the coupling energy (matrix element of the perturbation energy), as
in the case of adjacent vibrational frequencies., Fermi was the first to in-
terpret the spectrum of COZ on this bases, 3 The same phenomenon occurs
in other molecules also and has ita classical counterpart in the coupling of
a get of oacillators of comparable frequencies,

To calculate the perturbation effect, we choose the unperturbed sys-
tem as the one having similar frequencies and to which the rules of the per-
turbation theory of degenerate systems are applied, Term shifts are given

\4

by the eigenvalues of the matri‘ic (H(l))v, , where H(l) is the perturbation

energy., The elgenfunctions are linear combinations whose coefficients are

v. The case of two

those of the linear equations with the determinant (H(l))v,
nondegenerate vibrational frequencies of a molecule for which the condition

v, ¥ 2v2 is fulfilled may serve as an example,

If we set 1 + sz = S and vy - sz = A, the vibrational Hamiltonian for

the harmonic oscillator becanes, upon neglecting other vibrations:

u’

Y

. 2 . 2 2 2 2 2
1/2 [ql +q, + 4w (v1 q +v, qzz)]

o
i

(20. 4)

2,2
L2, .2, 2.2, 2 2 2 2 2 A 2 2
1/2 [q1 +4,% +778%q " + q, /4)]+1r Salg)” - a,%/4) + To— (9, + q,/4).

]

(

e s ———
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The A part independent of H is taken as the unperturbed Hamiltonian,

The eigenvalues are

wn(o) = (H(O))n“ =hS/4 (n + 3/2), n =2V, + V,, (20.5)

1

n+ 2
2
spectively, Provided only the cubic terms in the potential energy expression

Each level is n{ and n(21 L ~-fold degenerate, for n even and odd, re-
— g )

are retained, the perturbation energy is confined to the term ﬁlquqzz, The
remaining cubic terms do not contain matrix elements of coupled quasi-
degenerate terms, In addition, the terms in (20,4) that contain the quantity

A must be retained; the AZ part may be omitted since A << S, Hence,

1 2 2 2 2
H( ) = T SA(q1 -4, /4) + ﬁlquqz . (20.6)

The perturbation may now be calculated with the aid of (20.6) for n = 2
= O\
2 0}, The

(quasi-degeneracy of the term V) = 0, v, =2 with V) = 1, v
matrix elements of H(l) are derived from the well-known oscillator matrices,

The matrix will have the fellowing £orm:4,

_§-(-1+1/4) Pz

h ’ ‘ (20, 7)

PVZ | _§_(1 + 1/4)

where P = [312/41r3 h/S”, and the eigenvalues are given by
wil)

_}?;._ = n/8 1V a%/a + 2P° . (20. 8)

From (20.5) and (20.6), the total energy becomes

W, '
= = S/2 % \/Az/4 + sz $ (20.9)

i

if we subtract the zero-point energy by letting the zero-point energy be the
' ground state, the eilgenfunctions are,; according to (20, 4) and (20, 5):
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[0] g = W% {V" TIAT Uy * m“‘ozi
[qJ]OZ = l/\/z; {\/x - lAI 4!10 Foyx+ IZI \pozz (20.10)

The minus or plus signs apply when P and A have the same or differ-
ent signs, respectively, The mixing of the eigenfunctions is a function of

the relative values of the frequency difference |A{| = v, - 2v, and the term

1
splitting x, where x depends on the ratio of A to the interaction energy P VZ,

When AZ << P2 (quasi~degeneracy), it follows from (20, 9) that the
energy is

WZ-S 7z 2 )10 2
—~ = 8/2  PVZ (1+ A"/16P%), _ (20.9a)

where both perturbed eigenfunctions contain a}lmost equal parts of 4/01 and

QIOZ.l If A= 0, this {8 correct, and the assignments of the quanturm numbers
Vl' V2 to the perturbed eigenfunctions will be of more formal significance:

[¢] = 1/VZ [¢10 + 4’02]' (20.10a)

2 2 .
When A” >» P, the energy becomes .
! )
W v+ 2P%/A
= =5/2 % a/2 L+ 4P?/n%) = f (20. 9b)
2v, - 2P%/a

where the eigenfunctions are given ,iby (41)10 and (\p)oz. The result is identi-
cal with the one obtained from the usual perturbation calculation without tak-
ing account of the commensurability, 5 It should be noted that perturbation
effects of terms with different n values can attain the same order of magni-
tude,

We shall now investigate the perturbations on the Raman spectrum,
=0, V, =0 to the

. 1 2
two perturbed levels, The transition is permitted in the Raman effect when-

particularly on the transition from the ground states V

ever a mutual perturbation of the two levels exists, The perturbation term
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plquqzz does not vanish when 9 is totally symmetric and totally symmetric
1 =0

= 2 is permitted, as both terms belong to the same sym-

vibrations are always permitted in the ground state, Likewise, V

V2=0—>V1=0,V

metry class,
From Eqs. (20.5), (20.10) and (16, 4b), it follows that;

2

[o] 1000 = 1//2x {\/x F1AT (u)m00 + \(X - (D] (“)0200;
[a]ozoo = 1/2x {V,[ X - |A| (q)looo T T A (a)ozoog (20.11)
00 _ [3a \ 00 /9% )
= —_— b H = b \/'2_ 3
[e]10 <8q1>0 ! (2 oz (aq“zz)o 2

where b designates the zero-point amplitude (see (16.5)), The intensity ratio
(denoting (a)moo and ((1)02oo by ay and ay respectively) is given by

012 2
*Joo | ) | (=T8T o F T T8 o) | (20.12)
Z L ] [
l(\]——x Y T8 o) + % 15 o.z)l

Equation (20.12) represents the intensi'ty ratio when 4 and a, have the same

relative anisotropy, a condition that must not generally be fulfilled, If a

and a, have distinct anisotropies, invariants must be formed in order to

evaluzztte the intensity and polarization, For the sake of simplicity, the first
assumption is initially maintained but discarded later, We shall consider
the magnitude of (20,12) for different vaiues of | A|.

For Az > P2 (x = |A]), Eq. (20,12) transforms into Iaz 12/‘ 9 lZ (un-
perturbed intensity ratio) which is of the order of 1 ;: 100,

If we let v, and sz approach each other more closely (decrease in | 4|),

1
but retain the same interaction energy P, the intensity ratio can become larg-
er or smaller, The former holds when PA and a0, possess the same sign,
and the latter when they have different signs, In the record instance the in-
tensity of the overtone vanishes when the ratio of the excitation strength of
. X - |A] .

the two eigenfunctions XT (5 equals the unperturbed intensity ratio and
then increases again, Near the quasi-degeneracy the intensities attain the
same order of magnitude, and from Eq, (20.12) for A = 0, the intensity ratio

becomes
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2
[ = lal'a-’-‘ o Ty (20.13)

'0.1+0.2l2 o,1+20.2
Here, both eigenfunctions contribute equally to the perturbed states, so that
the difference between fundamental and overtone loses its significance, In
(20,13) the denominator refers to the line of greater (smaller) frequency for
the case P >0 (P < 0).

The sum of the intensities of both lines is independent of A, and equal
to the unperturbed intensity, which is almost completely concentrated in the
fundamental, The perturbation causes a different distribution of the Intensity
in the two lines, The contribution of the two unperturbed levels in the per-
turbed state to the scattering intensity is not proportional to their excitation
because the interference of the probabilities plays an importent role,

The preceding discussion is also correct when a and a, possess a
different relative anisotropy. Both lines will no longer have the same de-
polarizatioﬁ factor, and the invariant quantities of the perturbed lines must
be derived if intensity and polarizatin ratios are to be computed, Represent-
ing the trace and the square of the anisotropy of 9 and a, by aj, a, and ylz,

: YZZ- respectively, we obtain:

| 00 _ 27 00_ 2 2. 2 2 . 8, .
2l e te2 V)0 =aw vy, + 2, 3/2 :/—: (ago hlagg Do

00 00_ 2 2. 2 2 8 '
[2]os =3+ °1az‘[YZ] 02 2w te Yy -2¢c,3/2 ; (ago Nlape )58
-l for P

i A >0
_ ¥ T1A _ 2x
¢ = " R c, = (20,.14)
I for PA <0,
2X

With the aid of the expressions presented in Chapter 16 and (20,14), the in-

tensity and polarization can be computed,

Analogous perturbation effects occur where the following relation

exists between three frequencies:

v1+ vz ~v3.

S AT E—
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if the transformation rule of the Vg vibration type is the same as for the pro-
duct of vi and Voe All other commensuration relations (e, g., v ¥ v, for
n >2) lead to similar effects upon retention of higher -than-cubic terms in the

potential energy expression, In these cases, the perturbations will be rather

weak,
1. COZ'
Figure 13 describes the normal modes Ag Eu A
u
of vibration of the linear molecule, Only v 0 vl
\f
the totally symmetric vibration v) can oc- f
cur as fundamental in the Raman effect, X ) é'JP
v, and v, are antisymmetric with respect
to the center of symmetry, and hence, Y A J‘H
are forbidden, g
"1 Y2 !

The spectrum of COZ.‘ shown in

Flg. 14, consists of two strong lines,

Fig., 13, Normal modes of
vibration of the linear mole-
According to Fermi, we assume that the .cule XYZ'

each accompanied by a weak satellite,

relation vy ¥ 2v, is applicable, | However,

the hereby-induced perturbations differ from the one discussed above since

v, is a degenerate vibration,

If we disregard v,, the terms are characterized by the quantum num-

bers Vl' VZ' and s, The azimuthal quantum numbers run from VZ to - VZ'
and give rise to even (odd} values for even {odd) VZ' For the harmonic

3

oscillator, the energy is independent of s

Vv,V

0
w v, = h [vl(vl +1/2) + ,VZ(VZ + 1)] ) | (20,15)

Fig. 14, Raman spectrum of co, (Langseth and Nielaén).

i
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_with a degeneracy of (V2 +1). As a result of anharmonicity, terms with dif-
ferent s values split, but the degeneracy between + s and - s is determined

by the symmetry and remains unaltered,

Letting vy + Zuz = S, v = 2v2 = A, 2V1 + V'2 = n, then according to (20,15)
we obtain
wn(O) = 5/4 (2V, + V, +2) = 8/4 (n + 2), (20.16)

and the perturbation energy will be

11 = 2sa(q® - £2/4) + par’, (20.17)

where q ig the normal coordinate associated with Vie The two degenerate
normal coordinates are described as in Chapter 17 by £ + in = r exp (id).

The eigenfunctions contain ¢ in the form of exp (is$). Since terms with
different s values belong to different symmetry types, only terms with iden-
2 = 0, s =9 and
= 0, VZ =2, 8 =0, x2), perturbation with s = 0 has to be examined, From

tical 8 can perturb each other, For the casen = 2 (Vl =1, V
Vi

the following expressions:

(rz) st _ h(V2 +1) (rz)vzs _ n - -
= = - 8°,
V.8 %5 V.-2,8 2725 ¥ 2
2 2 \
V.8
2,72 h 77
(r™) = - \J(V, +2)" - 8",
V2,8 2n°S \'/ 2

we obtain, for the matrix elements of H(l):

V,V._s
M = a/a @vy - v, @) 12 = Pty + 1)(v,% - 6%
V1+1. VZ-Z, 8

(20.18)

v.,,V._,s
v, 1* 2 2
(HY) =P\/V (v, +2)° - .
vV L V,+2, 8 107 BZ]
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For n = 2, this becomaes

Al2 2P

2P -a/2 ||

having the eigenvalues )

My

w (1) ', :
2 2 2
= % VA /4 + 4P (20.19)

h

o
A comparison with\ (Zb. 8) indicates that the splitting here 18 larger

than that for the nondegenedj‘ate frequency Ve The total energy for the term
n = 2 is, according to (20, 16) and (20.19), upon subtracting the zero-point

energy, ;
X \ -
P2
w_. Ny
——2-=S/2+ -—?— - 'x2= \/A2+16P2. (20,20)
h g
—

The middle term sz consf’itutes the unperturbed term s =+ 2, Ina similar
manner, the splitting of the term n = 3 may be obtained, These are the six
+3 0 3:“, 1:“.’ As the matrix elements of the perturbation theory

are quadratic in 8, by combining terms with the same s value, we obtain from

terms 0 3

(20, 18) the perturbation m,:a.trix for both terms of 8 = + 1 and those of 8 = - 1;

this matrix is

NZ epyz| |

2P V2 -3A/4

(20. 21)

|
f
)
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having the eigenvalues
w
3 _ A
=- 7 tyA/4+8P7, (20. 22)
h

and the total energy less zero-point energy is

X

3

—-

w

35 -

BERE P x3=\/A2+32P2. (20, 23)
Z

. 38 - 3A _ ' .

The middle term —g = 3v2 corresponds to the unperturbed term with

s =+ 3, As may be seen from (20, 22), if X, >x2, the splitting increases
with increasing excitation,

If the proper splitting factor (x2 or x3) is substituted for x, the eigen-
function given in (20, 10) remains valid, as well as the expressions (20, 11)
and (20, 14) for the intensity and polarization of the Raman lines,

Figure 15 represents the energy levels for COZ' Let us investigate
the possible Raman transitions, Three lines are possible from the ground
state to the states n = 2, The center line, which has not yet been ohserved,

is supposed to be as strong as an unperturbed overtone.9 The two other lines

have the frequencies

2 c = 2 (20. 24)

where x, denotes the splitting; these rﬁay be identified with the two sgtrong

) 2
lines in Fig. 14, With x,

expressed by (20,11), (20, 12), (20.13), and (20, 14).
Ag the state 011 1s slightly excited at room temperature (v1 =677.5cm’
transitions to n = 3 are possible, giving rise to three lines, The center one

in place of x, the intensities and polarization are

corresponds to the unperturbed overtone, but has not been observed. The

frequencies of the adjacent lines are:

),
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a' = » c'= . (20.15)

The two lines are the weak satellites adjacent to the main lines in Fig. 14,

P and A may be determined from the ratio of the splittings. This ratio is

. ‘

3 A%+ 32P L
= [2 ; {20.26)
*2 AZ + 16P2

for A = 0 (complete degeneracy), we have

|

X

= V2, and x, = 4P, (20.27)

Sal

The observed and calculated il"'atios are in fair agreement, Table XIV sum-

marizes the measured frequencies,

—

Kluk

= 144,2/102,8 = 1,405,
2 .

Hence, v sz is almost e:ﬁact, and from (20, 27) we obtain

P=25.7cm L,

Fermi obtained P = 28 cm-1 by using an estimated value for the anharmon-
icity constant, This agreement is far superlor to that expected from the
approximations involved, and may partiy be fortultous, as was stated by
Fermi,

For A = 0, we have

at+c_a'+c -1
v,y =$/4 = y el ) =668.5cm
the direct measurement of v, in the infrared (transition 00, —~ 011) leads to
a value of 667.5 cm-l. The agreement is perfect, Also, the higher terms,

which are known from infrared studies, may be represented by A = 0.10
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Dennison assumes the values

P = 25,6 (:m"l and A =+ 4,2 cm"l .

with little certainty in the value for A.“
Exact intensity and polarization measurements would be of great value;
12

This

does not lead to definite conclusions as the value for A is uncertain due to

it has merely been reported that line a is more intense than line c,

the interference effect mentioned above, If the complete set of intensity and
polarization data were known for the four lines a, ¢, a'!, and c?, the tensors
ay and ay, as well as the value for A, could be estimated,

For comparison, the lowest terms of NZO and its Raman lines mea-
sured by Langsaseth and Nielsen are presented in ¥ig, 15, {(The broken line in-
dicates a doubtful Raman lix;e.) For this molecule, Vi and Zv2 are sufficiently

close to cause a mutual pezf;turbation. The term 020 is lowered by Ul cm-l

with respect to 022, througf; the perturbation of 100. The perturbation effects

are smaller than those for CO‘2 because of the larger value of A. A know-
ledge of the positions of the terms 033 and 031 would be important for the

evaluation of P and A.

L W)
7
haomr s W)
03, 1933 11, 1680
03, 20057 03y ¢
03, *#
10, 13884
02: 12658 f M0, 12858
02, 1362 02, 11795
. 02, 11685
i
i
y ‘
01, 6575 01, 5800

a) CO, b) N,0

Fig. 15, Energy levels of CO2 and N20.
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2. CSZ.
The Raman spectrum of CS2 resembles that of COZ' It consgists of the
two strong lines 655,0 and 796, 3 cm-l, which as in the case of COZ' are ac-

companied by two weak satellites, 642,6 and 810,9 cm_l,13

By assigning these lines to V1 and sz (assuming linear symmetry),

Placzek showed that the infrared spectrum can be interpreted on the basis

5 = 400, v, =1522 cm'l. 14

The fundamental vy = 396.8 cmnl was observed in the infrared by

Dennison and Wright, 15 Since this frequency is almost half that of the Raman

of the fundamentals v = 655, v

line 2v2 (796.3 cm-l), Dennison concluded that resonance between the terms
10, and 02 is nonexistent, and obtained A = - 1367 and , P| = 7.0. The pex-
turbation effect of the remaining terms entering into the second~order ap-
proximation should be of the same order of magnitude, The high intensity
of the overtone 796, 3 cm"1 appears to contradict this, however, Pienkowski
measured an intensity ratio of 1 : 3,1, If the c'orresponding Fermi inter -

action energy is calculated (by neglecting a values are obtained that do not

)s

accord with the experimental ones, :
Another approach comprising the weak satellites can be attempted,

According to measurements by Mesnage, the weak lines are almost symmet-~
rical with respect to the center of gravity of the two strong lines (a! = 642,6 cm~
c' = 810.9 cm-l).l-? This demonstrates that the mutual perturbation of the
respective levels (100 and OZO) 111 and 131) is large in relation to the effect
of the remaining states, From this premise and from the given term split-

tings we obtain x_ = 140, 8, Xq = 168. 3, and

2
A = - 106, |p‘ = 33, (20. 28)

1

resulting in v, = 389.5 cm ., The difference between the calculated and ob-
served frequency appears to be small, particularly since the Raman spec-
trum was measured for the liquid and the infrared v, frequency for the gas-
eous state,

The values presented in (20, 28) yield an intensity ratio of 1 : 7 when
the original Fermi expression is employed., With the aid of (20. 9} the ob-
served ratiol ; 3,1 is obtained, provided the value of Iaz l/l a l is 0.15,
This corresponds to a ratio of the intensity of the overtone to that of the

fundamental of 1 : 40, which may well be possible although high,

1
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Evidently, the; observedjposiéic‘m of the lévels can be correlated with
the measured ratio c_:_)f the intensitiés. Thei assumption made by Pienkowski
that both lines posseas identical depolariza-tiori factoars can be understood
only if the tensors (11 and a, possesa approx1mate1y equal relative anisotropy
and if their mixing does not alter the depolyariZatxon factor, From the selec-
tion rules, it follows that the two tensors are _axially symmetric but that they
can have distinct anlsotrOpies. Verification of this interpretation of the
spectrum requires a completion of the Rafhan'and infrared measurements,

The results obtained by’ Bhagavantam on the Raman spectrum of liquid
carbon bisulfide should be m(‘iluded 18 He -detpcted two weak lines at 400 and
1500 cm-l, and ider?tified them with the fréquencies v, and v3e These are
forbidden in the free molécule bec'ax‘x,se they are antisymmetric with respect
to the center of symmetry of the molecule, Sl:hould these results prove cor-
rect, then the lines would be caus";ed by the effect of adjacent molecules des-
troying the molecular symmetry, , Similar cages have been observed in crys-
tals, Further studies should assist in the ,elluz_cidat'ion of the effect of internal

flelds,

3. Methane, Metﬁ?l Compounds, CCl,.

Another series of spectra can also be more easily interpreted by means
of perturbation effécts. ‘The' moét important example is that of methane,
The infrared and Raman spe#tfa:é;n be aina".ly_zed on the basis of a tetrahedral

model, The normal frequencies are

vy = 2915, v, = 1522, v, = 1304, and v, %3020 cm ™!,

where v, i8 totally symmetric, v, doubly degenerate, and Var vy triply de-
generate, The Raman spectrum contains' the strong line 2914.8 cm "~ (Vl)’

the moderately intense line 3022,1 cm” (v3). which occurs in the infrared

19

also, and the weak line 2071 5: cm 1. The latter corresponds to the over-

tone 2v, which is intensified because of the proximity of Vi Its symmetry

2

condition is fulfilled but. will not be proved here, The lme v, has not been

*

observed, ?

I o
A similar observation was made for many methyl derivatives: Com-
pounds that permit the separate treatment of the methyl-group vibrationszo
give rise to two totally symmetric and two degenerate normal vibrations

¢

b
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(Al H vl', VZ' and E v3',-{14'), if the pyramidal structt:xie is assumed, The
first occur near 2960 cm ~ and between 1200 - 1400 crn , while the latter

are near 1450 and 3050 cm_l. Hence, we have vl' & 2v3'. 21 Methyl halides
and other methyl compounds show an additional line near 2860 cm-l, which

is ascribed to the overtone 2v_! being intensified by the adjacent v The

'
fact that the 2860 cm-l vibratiim gives rise to a parallel band in thle infrared
and that it has the expected polarization as measured by Simonﬁ;ZZ confirms
this assignment,

The spectrum of CCl4

Raman and infrared spectra, the molecule has the tetrahedral structure of

will be discussed briefly, On the basis of its

the methyl halides described in Chapter 19, From infrared and polarization

data the following fundamentals are obtained (the description of the frequen-

cies agrees with that for methane); vy = 459, vy = 219, vy = 314, and vy ® 773 cm-l.
The frequencies are observed in the Raman effect, In contrast to other
tetrahalides, two lines of equal intensity occur (758 and 789 cm—l) near v,

which indicate an accurate relation vyt vy = v, When the term splitting

and the intensity distribution are calculated, a complex intensity distribution

rather than a doublet is obtained without the assumption of a particular value

23,24
for (azu/8q18q3)0. ' 2
series of excited states which are occupied to a considerable extent at room

As a result of the low values of the frequencies, a

temperature should be taken into account,
In addition, the Raman spectrum exhibits a faint broad line at 1540 cm-l,
ascribed to 2v4. The depolarization factor p < 6/7 substantiates this assign-
- ment, 25 In contrast to the fundamental, isotropic scattering is permitted
for the overtone, The theoretical treatment of its splitting process is more
co‘mplex than that of Vg4 and has not yet been carried out, 26, 24 !
To summarize: A qualitative understanding has been reached of a series
of spectra by considering perturbation effects suggested by Fermi's explana-~
tion of the CO2 spectrum, If the quantitative aspects of the theary are to be

proved, further investigations are required,

4, Existence of Several Equilibrium Configurations, NH3.
A peculiarity of the energy levels of NH3 is due to the fact that, accord-
ing to quantum mechanics, a particle can penetrate a potential barrier when

its energy is not sufficient to overcome the height of the potential, NI—I3 has

the structure of a flat pyramid, and there are two equally-permitted equi-
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As a consequence, Hund showed that all vibrational levels split into two, 21

This splitting increases with increasing vibrational energy, and when mea-
sured in terms of vibrational numbers it can be considered as the period of
oscillation, i,e., as the tirhe during which change in the equilibrium posi=-
tion occurs, Only the two totally symmetric of the four normal vibrations
were observed in the Raman effect of the gae:ze vy = 3334 cm"1 and :
v, = 949 cm—l. 29 The latter is a doublet, 933,8 and 964, 3 cm—l (see Fig, 18).

The selection rules will be used in the interpretation of the spectrum, Aside

from the symmetry elements of the pyramidal molecule (c v symmetry),

the plane of the three H atoms is taken as the plane of symmetry for the two
equally-permitted equilibrium positions, With respect to this plane, each

vibrational level splits into a symmetric (a) and antisymmetric (8) term,

where the f§ term is usually the higher one, The selection rules for the com-

binations of the split terms are those of the D3h group,

K A ()
1
7'\: (0)
[}
[
Ilg
o] 1
-
& |0
1
—— ()

(a)

Fig. 16, Vibrational spectrum of NH3.
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According to Table VIII, totally symmetric vibrations permitted in the
Raman effect involve transitions o @ a, or § #p, while in the infrared trans -~
itions occur between a € 3. Both spectra are expected to display doublets
for the transitions from the ground state to the first excited state (compare

Fig. 1%) so that the following holds:

Raman = A0 - A1
(20.29)

AIR=AO+A1.

The vibrational form of v, practically leaves the N atom" in its rest position,

1
but it participates in the v_ vibration. This would lead to a splitting of the

vibrational levels which iszlittle affected by the quantum number V1 but in~
creases with increasing value of VZ' The N atom gets closer to the poten-
tial barrier height for higher excitations of Vs Th_e1 Y1 frequency is not split
in the Raman effect, but it is split by about 1.6]cm " in the infrared, accord-
ing to Dennison and Hardy,30 giving I

(v)) |

By=b, Co=lem’ (20.30)

The splitting of vy is considerably larger; it amounts to 33 cm-1 in the infra-
red and 30.5 <:m"1 in the Raman effect. The agreement between (20.30) and
the difference of these two values, ZAl, is better than expected from the

accuracy of the experiments,

From the observed splitting, the period of oscillation is estimated to

: -be 3 X 10-10 sec in the ground state and 10"11 sec in the first excited state

(')flvz. For discussions on the shape of the potential barrier, papers by
Ijennison and Uhlenbeck, Fermi, Rosen, and Morse should be consulted.31
Spectra of other molecules should also demonstrate the existence of
several equilibrium positions, It would be of interest to investigate mole-
cules having hindered rotation. They might be treated in an analogous

manner,

5. Benzene,
A remarkable feature of the spectrum of benzene is the occurrence of

a series of identical frequencies in the Raman and infrared spectra, Accord-
ing to the:mutual exclusion rule, this can take place only provided the dy-
namics of the system causes an approximate or complete degeneracy between

even and odd terms.
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It is possible that the coincidence of both lines at 3000 cm—l, associ-
ated with the H atom, can be explained in this manner. If there is a weak
interaction between the H atoms, the vibrations of the individual atoms will
be symmetric and antisymmetric with respect to the center and of compar-
able magnitude. However, the lower frequencies can hardly be explained in
this fashion. An alternative would mean that the benzene molecule does not
possess a center of symmetry or that the breakdown of the selection rules
is caused by the fields of the adjacent molecules. The latter is unlikely,
since there is, for example, a strong band in the infrared spectrum corre-~
sponding to the intense line 1178 cm-l of the Raman scattering. An investi-
gation of the Raman spectrum of benzene in the gaseous state and an exten-
sion of the infrared spectrum towards longer wavelengths would be of great
import in the elucidation of this problem. The strong line at 992 cm™? may
be ascribed to the totally symmetric vibration of the ring, on the basis of

4
polarization measurements,

P e———
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Chapter 21, Rotational Structure

In Chapter 15 it was shown that the total intensity of the rotation-vibration
band v -+ v! and the rotation band v -+ v is independent of the degree of excita- .
tion of the rotational levels, It is equal to the scattering intensity agsociated
with the transition v -+ v! and v — v of the nonrotating molecule fixed in space
and averaged over its spatial orientation, Up to now we have examined the R
total intensity; in order to obtain the distribution among the individual rota-
tional lines, we must express the matrix element of the polarizability in
terms of coordinates fixed in space rather than fixed in the molecule, For
this purpose the expressions (15, 5) and (15. 7) must be evaluated, In Chap-
ter 15 it was emphasized that the isotropic part of the polarizability is inde-
pendent of the orientation of the molecule and that the matrix elements for
the transitions involving a change in the rotational quantum numbers will
vanish, Hence, the trace scattering associated with a vibrational transition
does not include rotational lines. Its intensity, which according to (15.15b)
is independent of the rotational levels, will be concentrated in the pure vi-
brational line, the Q branch, The polarization of the rotational lines is
identical with that of the quadrupole scattering (p = 3/4, Py = 6/7, P =6).
This also applies to the QQ branch when the trace scattering is forbidden for
the particular vibrational transition; the fundamentals of the non-totally sym-
metric vibrations fall into this category, °

The intensity distribution of the gquadrupole scattering may be com-
puted by means of Eq, (15.17). Results of such a calculation can also be ob-
tained from the gqualitative examination of the rotational structure: In the
Fourier expansion of a, the coefficient associated with the frequency vr,r
constitutes the classical counterpart of the matrix element (a)r,r. So that
may be expanded for the pure rotational Raman effect, the polarizability com-

_ponents a,, are expressed in terms of a space-fixed coordinate system by

ilc

O 1yt which are fixed in the molecule:1

ay T izl; aypr €OF i'i cos k'k,
where LT is independent of the rotational level and of the molecular orienta-
tion, If the molecule rotates, the direction cosines become functions of
tirne, and the rotational frequencies will'occur in the Fourier expansion of
Opee The expansion is particularly simple in the case of the symmetrié
rotor since the direction cosines may be given by the Eulerian angles




-161- UCRL Trans No, 526 (L)

Al

A, ¢, and X. @ is time independent, while ¢ and X are linear functions of time:

The direction cosines depend linearly on the spherical functions of ¢ and X,

+n,vy in (15, 2) occur féor |n1| <2, |n2[ <2, re-

1Y

If the polarizability is a symmetric tensor whose axis comc1des with

and the frequencies n v o

sulting in a rotational spectrum with 25 branches v + n +n, vy

the figure-axis, it is independent of the azimuth about the figure-axis, X,
Since the rotational frequency about this axis vainishes in the Fourler expan-
sion, the rotational spectrum will consist of the five branches v, v = vd),

v £+ 2v,. Ior zero angular momentum about the figure-axis {as for diatomic
and linear molecules ), the total angular momentum is perpendicular to the
figure-axis and the polarizability ellipsoid assumes the same position after
half a rotational frequency. Consequently, the rotational frequencies do not
occur in the Fourier expansion of a, and the rotation spectrum has only the
branches v and v £ 2v,. For isotropic polarizability, a is independent of
orientation, leaving a v branch in the spectrum without any rotational struc-
ture,

The rotation-vibration spectrum may be treated similarly upon replac-
ing the polarizability component a1 by the Fourier component ﬁi'k' associ-
ated with the vibrational frequency, The rotational structure for totally sym-
metric vibrations (i.e., vibrations that do not alter the symmetry of the
molecule) i8 the same as that of the unshifted line, For the remaining vibra-
tions, the symmetry of pi'k' 1s reduced. Hence, Raman lines of isotropic .
molecules can exhibit rotational structure, The simple frequency v¢ occurs
in the rotation-vibration spectrum of linear molecules, and 2v,, the double
rotation frequency about the figure-axis, is involved in that of axially sym-«
metric molecules,

The evaluation of (15, 7) for the symmetric rotor whose energy levels
are given by (see the first chapter of this volume by Krdnig)

2

: 2 h
w._ =B|Jr+1)+pK’|; B= , B =({A/C-1), 21,1
IK [ p ] 5l B / .) (2l.1)

yields3

[6"] Vi = DT Z l(“x' ' )v'vl 67\'+p. ' (21. 2)
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where C and A represent, respectively, the moments of inertia about the
figure-axis and about an axis perpendicular to it. The quantum number of

the angular momentum about the figure-axis K can assume the values from

S VJIK
VIJIKI

tensity of the quadrupole scattering, " and b

outlined in Table XV,
The quantities bJK

is that introduced in Chapter 6 for the in-
JK
JIKI

Jto - J. The quantity G

is a function of J and K, as

obey the relations

JK!
JK J~K
pIK ol 21. 3a
JIK T VgL ( )
(27 + l)bJ,K, = (20 + 1)bJ Kt (21. 3b)
Z bJ 1Kt (2. 3c)
N
2 bJ}K+AK =1/5 (2J* +1)  (for a fixed AK). (21, 3d)

The selection rules for J are
J=0, 1, £ 2,
The sum in (21, 2) extends over those components for which
A+t =K' - K, (21. 4)

For AK =+2, this involves one component au(a_l_l); for AK = + 1, two iden-

tical components q ., and alO (ao 1 and a_lo); for AK = 0, three components,

01
which are related by a(s) 11' a0 + Zal 1= 0. The selection rule for K is
AK =0, =1, % 2, (21. 5)

For any AJ, the transition probability for J - J', K - K! depends, ac-
cording to (21.2) and (21.4), on one component of the tensor (a(s))x., fixed
in the molecule, 5 In the event that this component vanishes because of the
vibrational selection rules, the rotational branch is absent, The resolved
rotational structure furnishes information on the symmetry of the vibration

associated with a particular band,
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For instance, the polarizability ellipsoid of axially-symmetric mole-~
cules is symmetric with respect to the figure axis (\' + p' = 0), and AK =0
applies to the unshifted scattered radiation as well as to the totally symmetric

vibration bands., The spectrum consists of five branches of the following

frequencies:

vJ =~ (47 + 6) B/h S - branch
J+2 A
J .

Vig ® (43 - 2) B/h, O - branch

vl,. = - 2(J41) B/h, R - branch (21. 6)
;L :

Via © 2J - B/h P - branch
=0

vy = Q - branch

P

[

Introducing the anisotropy y through the relation y = G40 " %1 T 3/2 aOOB’

which is applicable to the rotation ellipsoid, one derives the expression

2
VIK JK v
[C'S] VITK' = Ppigs 2/3 I(Y) Vll . (21, 7)
According to (18,11), we have
Kl -K=2zp - Zt.(s’.-a.), (21, 8)
[ J J
and from (18,12), for the fundamentals, we have

AK = % J. (21, 8a)

For # =1: the rotational spectrum consists of ten branches, whose frequen-

cles are obtained by adding
Bp/h (2K + 1) and -Bp/h (2K - 1), (21, 9)
For f = 2: AK=4# 2, and the frequencies to be added to (21.6) are

4Bg/h (K +1) and - 4Bp/h (K - 1), (21,10)

-,
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To determine the intensities from (2l1.2), we must include the population of
the rotational levels, The intensity of a rotational line may be expressed as

a fraction of the intensity of the quadrupole scattering v - v}, i, e,,

— 2
JK } sV Nt
VIR (27 + 1) exp (- WJK/kT) bJ'K' o l(“x'p' Jys I SRiI.K "

ViI'K! \
. (21.11)
s,V | 2
v, 5(T) ;2@ [ Capn, |

Here, S(T) represents the partition function of the rotor, For molecules
containing identical nuclei there enters still another factor correcting for

a change of weight of state JK due to nuclear spin, 7 For diatomic molecules,
this factor is (see the article by Kronig and Beck)

!
even d Fermi

odd an Bose statistics,

i(2i + 1) for J

even d Bose

an . statistic
odd Fermi tics,

(i +1)(2i + 1) for J
where i denotes the nuclear spin.8 The factors for the mosgt important cases
of polyatemic molecules are summarized by Dennison, 9 and by Placzek and
Teller, 10 i

If nonzero components exist for only one value of \' + p! because of the
vibrational selection rule, both sums in (21.1l) become identical, and the in-
tensity distribution in the rotation spectrum will be determined by the univer-
sal constant bgf{K, and by the rotational energy {moment of inertia). This
* has been observed in the case of the fundamentals of molecules having p-fold
" symmetry with p » 3, Molecules with p = 3 agssume a special role, Since ¢

is defined only module p and since the sign of ¢ is immaterial, the compon-
ents \! + p' =1, as well as \! 4+ p! = 2, differ from zero for the degenerate
vibrations (f = 1), Therefore, the quotient in (21.1l) is different from 1,
Branches with AK = 1 and AK = é occur whose intensity is a function of the
absolute value of the square of the corresponding tensor components fixed
in the molecule,

The values of the frequencies (21, 9) and (21.10) and the complete rota~
tional spectrum will be modified by the vibration-rotation interaction. As
the degenerate vibrations usually possess an angular momentum, the states
having such excited vibrations are associated with an angular momentum of

the form The prime over the summation sign means that surnmation

B.
tt
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is to be taken over the degenerate vibrations only, (,t is a constant character-
istic of the normal mode t, and therefore depends on the vibrational force
field, When the summation is carried out over the vibrations of the same
symmetry type, then we obtain

Igt] <1l and Z C’t =1,

When the degenerate vibration is the only one of a given type, we have

The angular momentum of the pure rotation about the figure axis is

1 .
L=K- Z .5, (21.12)
t

The energy can be separated formally into vibrational and rotational contri-

butions, For the latter, K must be replaced by 1,, and we have

rot

In the expressions for the intensity, K is not to be replaced by L.. They re-
main unchanged, because only the total angular momentum and its compon-
ents are involved in the derivation, The selection rules apply to K, but the
frequencies are determined by L, which alters the appearance of the spec-~
trum when ¢ # 0. According to (21.12), L is not an integer; it depends largely
on the values of F’t' and may be derived for specific cases from (21.12) and
(21.13),

If we limit ourselves to bands associated with fundamentals originating
from the ground state, it can be shown that the interaction between vibra-
tions and rotations results only in an apparent change qf the moment of in-

ertia, Equatien {21,13) gives the frequency of the transition from the ground

= =1
gtate to Vt 1, B,

Vi = B/B (I 4 1) - ST ) +p F L)% - K] 4

re
E=E _ +E_, =B [J(J +1) + BL2] + Zt:hvt(vt +1/2). (21.13) .

mdans o P ;
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Because of Eq. (21.8), we have

for the transition st: 0-1 K' =K + lt;

1

for the transition st: 0—-+ .1 KI=K - lt.

In place of (21.9) and (21,10) one obtains, respectively,

Bp/h [(zx +1) = 2(K + 1)L, + gtz] and -Bp/h [(ZK -1) ~ 2(K - ne, - Ltz} '

(21, 9a)
and  4Bp/h [(K +1) - 1/2(K + 2)¢, + 1/4 t,%] and

4Bp/h [(K - 1= /20K - 204 - 1/4 6,7 (21.10a)

For the line interval, we have

11

Av = 2Bp/h (1 - §)  for the bands K -~ K = 1, .

i

Av = 4Bp/h (1 - {,/2) for the bands K ~ K * 2.

These expressions show that without correction the resulting values of
B do not yield the actual moments of inertia, It may be determined from the
Raman spectrum for the case p = 3, since branches with AK =1 and AK = 2
occur for the same vibration, Then, one obtains two equations with two un-
knowns, and both § and t_,t can be evaluated,

In some instances l;t may be deduced from symmetry considerations,
For a spherical rotor a comparison with the infrared spectra is advantage-
ou&;.ll The moment of inertia of methane has been evaluated in this manner,

The linear molecule represents a special case of the symmetric rptor,
The moment of inertia about the axis is zero, giving L. = 0, and the angular

momentum about the axis is equal to the angular momentum of the vibration;1

K= ) .. (21.14)

t
Only vibrations with ¢ = 0 and ¢ =1 are present (see Table X), For the former,
we have \' + p! = 0, and for the latter, A' + u' = 1, resulting in AK = 0 and

AK =1 for the two fundamentals, respectively.,
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If the molecule exists in the ground vibrational state (or, in general, in
a state in which degenerate vibrations are not excited), then according to (21.14)
we have K = 0, and according to (21.11) and Table XV for the rotational struc-

ture of the Rayleigh line and for the totally symmetric bands (¢ = 0) we have:

vJ J0 :
vigt _ Prigl2d +lle; exp (- BI(T + 1)/kT)

IX. 5(T)

I
(21.15)

JO _ J(J+ 1)

Pyo = 27 - D27+ 3}’

Jo _
541,09

| (21.15a)
Jo (J+ 1)(J +2)

bry2,0 =¥ 2 Ry T )T F B

,J—%—‘H_k)
ZT+ D27 - 1)

b = 3/2

J-2,0

The P and R branches vanish, as was illustrated earlier. However, -
they do occur when degenerate vibrations are excited in the initial state, The-

same is true for the fundamentals of the bands ¢ = 1:

VI
I
VIt L 30 - BJ(J + 1)/kT
YEZ=b30 (254 g, exp ( S((TT )/kT) (21.16)
Iy
70 _ 1 j0 J
by =32 mrorer sy Praa SV 2aE (21.162)
JJ0 (T )T+ 3)

J+2,1 T (2T ¥ D27+ 3}

The Q branch is extrernely weak since bg? approaches zero as J-2 goes to
zero, Two cases may be distinguished for the overtones of these bands;
when As = 0, the bands possess the same structure as those of the totally
symmetric vibrations, and Eqgs. (21.15) and {(21.15a) are applicable., When
As has the value 2, then AK is equal to 2 and the intensity distribution is a
function of bJ?Z. Equations (21.15) and (21.15a) are also valid for diatomic
molecules,

Spherical-top molecules have three identical moments of inertia, The

rotational energy is independent of K:

Wooe = BIT+1). (21.17)
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The frequencies belonging to different transitions K -+ K', but to the same
transition J -+ J', coincide, Therefore, the transition probabilities rust be

summed over K and K!. From Eqs. (21.2) and (21.3), the following is ob~

tained:
) [GS] VIE o /szp e 1) |a (S)IZ
K K VIJK! Nt Ap!

(21.18)

2/15(23" + 1) [yz} v -

The transition probability is independent of the rotational quantum
numbers except for the factor 2J' + 1. This can also be demonstrated in a
different manner.

The quantity [YZ} \\;, vanishes for the Rayleigh line and for the totally
symmetric vibrational lines due to the spherical symmetry of a, and there
will be no rotational structure.. The remaining lines possess rotational étruc-

ture, and from (21.18) and (21.16), we obtain

VI

I‘ t T ' X -

\IrJ - /5 (20 (2S¢ 1)Se(Tp)( BJ(J + 1)/kT) (21.19)
Vl

The interaction between vibration and rotation may be treated like that for
the symmetric rotor., For a detailed treatment of the spherical and asym-
metrical rotors, papers by Placzek and Teller should be consulted,
A number of experimental data will now be presented. The rotational
structure of the Rayleigh line was resolved for several diatomic molecules,
15 16 16 17 18
5 N,, OZ' HCl,”  and CO,

COZ,IC) and NH 20 The rotational structure of the vibrational lines was re-
23

such as H and for the polyatomic molecules

solved for Hz,l8 CH4,2'Z and NH3 (in aqueous solution}, In all cases except
for NH3, the experiments were conducted on the gases.

Figure 17 shows the rotational Raman spectrum of NZ reported by
Rasetti. The distinct alternation of intensity is due to the nuclear spin of
the N atom, and accounts for the fact that levels with even and odd J values
have different weights. The present example indicates that the even rota-
tional levels have the higher weight. Figure 17 demonstrates that the line
interval between the strong rotation lines is larger than that between the
first strong line and the exciting line, From (21.6) it follows that the fre-

quency vJ is equal to 2B/h (2J - 1). For even values of J, the frequency

J-2
of the first line, vOZ, is 6B/h, which is smaller than the line interval 8B
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25637

Fig. 17. Rotational Raman spectrum of nitrogen (per F. Rasetti),

but larger than that for odd values, v13 equals 10B/h. Since NZ has even J's,
the strong lines correspond to transitions between even values for J. Nitro-
gen obeys the Bose-Einstein statistics because of its even values of J and = *
electronic ground state., The significance of this in nuclear physics has been
discussed by Beck. The measurements by Rasetti made it possible to deter-
mine more accurately the moments of inertia and the interatomic distance of
NZ in the electronic ground state, This had not been accomplished earlier
because the homopolar nitrogen molecule is infrared inactive, The electronic
transitions arising from the ground state have not been analyzed due to their
unfavorable location in the far-infrared. In a similar manner, the Raman
spectrum of OZ conformed to the Bose-Einstein statistics and nuclear spin
of zero,

Bhagavantam investigated the intensity of the spectrum of HZ;24 only
his quantitative results obtained by means of optical density measurements
will be discussed: 1) the intensity of a series of rotational lines; 2) the
intensity of the perpendicular components of the rotational line V = 0,
J=1~->V =0, J=3, and of the Q branch V=0 -V =0, J - J (unshifted line);
3) the intensity of the perpendicular component V=0, J=1 -V =1, J=1,
For the vibrational line 0 —+ 1, the lines of the Q branch do not overlap exactly;
they may be resolved due to the vibration-rotation interaction. Table XVI

summarizes the measured intensities (in arbitrary units) of the rotational

lines for the vibrational transition 0 - 0, For comparison, values at 30°C

WL~ PRS- S0

=

A et . N e e et B e

T =—

i
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were calculated by means of (21.15) and (21.152), having recourse to the welght
factor for spin 1/2 and the Ferm! statistics {odd rotational levels in the ratio

3 :1). The first line was used as fiduciary point,

- J\-/.‘,\?}
st d

SRR

Fig. 18. Raman spectrum rotations of NH, {per Amaldi and Placzek), The
two arrowas at the right show the vibration doublet 933.8, 964.3, whose splitting is
caused by the two possible equilibrium positions ofthe N-atom (see Chap, 20, Sec, 4).

The observed and calculated values agree fairly well, However,
Bhagavantam reported to have observed discrepancies between the theory
and his experimental results of 2) and 3), accepting them in confirmation
of the theory of "photo spin'" advanced by Raman and Bhagavantam.,“25
Actually, the disparity is largely due to the error in applying the uncorrected
formulae of Manneback, The inconsistencies will be further discussed be-
low, Rarnan and Bhagavantam's theory stipulates that classically, as well
as quantum mechanically, the selection rules for the scattering process are
independent of the rotation of the scattering molecules, The particle con-
cept of the scattering process of collision between spinning photon and mole-~
cule would require such a dependence. Hence, the classical and quantum
theories of the scattered radiation must be modified. The applicability of
the 'photon spin' concept {8 limited by the uncertainty principle, but the
results are implied in quantum mechanics, Raman and Bhagavantam's
error originates already in the classical theory. If the incident light is
separated into right and left circularly-polarized components {This corre-
aponds to the right and left photon spins of the particle concept, ), it can be
shown that for the components of the example chosen by Raman and Bhagavantam
the selection rules depend classically on the rotation of the molecule, Hence,

the modification of the scattering theory suggested by the Indian authors is

unjustifiable,

UL RL =TG- D% L

T ——— T ST TR T
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Table XVI
P

Intensities of the Rotation Spectrum of H2 (Bhagavantam),

J J! Observed Calculated
0 2 0.67 0.67

2 0 0.13 0.12

1 3 ) 2.0 2.1

3 1 0.13 0.12

2 4 0. 30 0. 32

4 2 - 0. 006

3 5 0. 21 0.23

4 6 - 0.010

A comparison between the results of Bhagavantam and those obtained
with the carrect expressions (21,15) and (21, 15a) indicates a discrepancy
smaller by a factor of two in the latter instance. Since the polarized trace -
scattering does not contribute to the Bca’.tltering‘ components, the total scat-

tering intensity is given by (21,15) and (21,15a) as

L(Vv:0-+~0, J:1—3) 9ngg% exp (- 2B/kT)
= =1,22
M)
I, (V:0~0) %— (27 + L)g b0 exp (~ BI(T + 1)/kT)
(21,19a)
_1 for J even
€173 for Jodd,
and for the vibrational line, we have
LL(V:0—~1, J:l—3) bg% ;
= —qy = 3/2 =15, (21, 19b)

L(V:0~1, J:1+1) b,

Bhagavantam obtained numerical values of 0,43 and 0,65 for (21.19a) and
(21,15b), respectively, and, consequently, a higher relative intensity of the
Q branch than predicted from theory.™ The various sources of error (for

example, the incomplete elimination of the more intense parallel component)

I SR e

B =

o A3 g
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account for the intensity of the QQ Branch. On the microdensitometer trace,
the lines V: 0 —~1, J:1 -1 and V :0—+1, J:2 - 2are not resolved, result-
ing in incorrect mtens\\ty values. An 1ndependent check of these difficult
measurements would be of cons1derab1e 1n‘terest It has also been reported
that the spectrum of liquid Hz exlublts rotational structure. 26 ,‘

Houston and Lewis succeeded in resolving the rotational structure of
the Rayleigh line of COZ' In accolrd with the selection rules, branches with
AT =0, £ 2 exist (the odd rotatio~na1 levels are absent because the oxygen
nucleus has zero spin), 21 The moment of inertia was computed from the
line interval, and the ioéition of the most intense line agrees with the cal-
éulated one, This applies likewise to'the data published by Rasetti. The
rotational structure of the vibra.ti'onal.,lines in CO2 and NZO was investigated
by Langseth and J. R. Nielsen,

The spectrum of CO2 shows two' strong lines and two satellites (see
Fig. 14), both having unresolved O and S branches., The same observation
was made for the corredponding lines (000 - 10o and 000 —- 020) of ‘NZO' In
addition, very weak lines occur WhiC]’;l_: Langseth and Nielsen interpreted as
rotation branches of the ‘overtone 000‘- OZO. The Q branch in the CO2 Bpec-
trum is missing, although it is predicted from the intensity expressions
(AK = 2); it is observed in NZO' " There is no obvious reason for this behavior
because the relative intensities of the branches for CO2 and NZO are iden-
tical; thus, some doubt remains as to the assignment of these weak lines,

A study of the rotational structure of the degenerate vibrations in H O
and CZH would be of mterest as the intensity expressions predict a weak
Q branch, The two fundamentals have not yet been detected in the Raman

effect, :

Figure 18 presents the rot:'la'tional Raman spectrum of NHB' 28 An alter-
nation of intensities is obaerved',;,,aa in the case of NZ' but here it is not a
result of nuclear spin. The nori.linear NI—I3 molecule has O and S, 'as well as
P and R branches, Each second line of the latter coincides with a line of
the O and S branches, thereby incredeing their intensity, In addition, line
intensities of the P and R branc}_ies fall off faster than those of the O and S
branches, The lines AJ =1 6riginate (see (21,6)) from higher -excited, and
therefore less-populated, rotational levels than do the adjacent ones with
AJ = 2. The complexity of the spectrum and the positions of the strongest
lines are in qualitative agreement with the intensity distribution calculated

according to (21, 14) by summing over K. The rotational structure: of the
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totally symmetric vibrational line 3333 cm“l wasg investigated in aqueous solu-

29 and by Williams and Hollander, 30 Langseth observed

tion by Langseth,
several lines, forbidden by the selection rules ({AK ;4 0), but not detected by
Hollander and Williams,

In the spectrum of methane, Dickinson-~Dillon-Rasetti examined a series
of rotation-vibration lines associated with the threefold-degenerate frequency
3020 cm_l. The angular momentum of the vibration and the moment of inertia
may be d‘;duced by comparing the line interval with that in the infrared band,
One obtains

¢ =0,07and A = 5.3 x 10",

The totally symmetric vibrational line and the Rayleigh line do not possess
rotational structure because of the cubic symmetry, Bhagavantam32 furnished

additional evidence for the Rayleigh line,

The Structure of the Unresolved Bands,

The rotational structure of heavy molecules cannot be resolved, On
either slde of the Rayleigh and Raman lines depolarized wings are noted, .
From evaluations of the intenslty expressions for the Rayleigh line, it has
been shown for the bands AK = 0, that the line shape depends on the relative
magnitude of the moments of inertia, 3

The P(R) and S{O) branches do not give rise to separate maxima, but
to a single maximum which, for C/A >0,2 and for C/A < 0,05, appears as
a sharp line and becomes broad for intermediate values, 3

54 B/kt and Bp/kt are each much smaller than 1, a2 symmetric line re-
sults {classical limiting case), When (B/kt)l/2 is no longer small compared
with 1, the intensities of the R and S branches increase at the expense of
those of the P and O branches, while the intensity of the Q branch remains
invariant, The latter changes only when B/kt can no longer be neglected,

The contribution of the Q branch to the total quadrupole scattering is
given by the following expression, provided B/kt is much smaller than 1:

o 1)2
Py =1/8|(2 + 21/p + 27/%) - 2/ + 27/p%)( + py/ 2 2ES 2ion B / .
8 /

(21, 20)
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This quantity is plotted in Fig. 19 as a function of the ratio of the moments of
inertia C/A = l/(l +B). For the rotor, FQ has a value of 0,25, decreases
rapidly with increasing C/A, goes through a minimum (0.169) for C/A = 0, 3,
assumes a value of 0,20 for the sphe'rical rotor, and increases to 0, 254 for
a planar structure (C/A = 2). |

The trace scattering contributes to the intensity of the Q branch, but
it does not contribute to the remaining branches, Consequently, the depo-
larization factor pn(Q) of ne Q branch is lower than that of the total line

(band) p,e One obtains

Fop
p_(Q) = —
n

1-7/6 (L-Fyp_

Raman and his co-workers attempted a comparative study between pn(Q)
and Py assuming that pn(Q) could be deduced fro;r; polarization measure~
ments made by using narrow spectroscopic slits, For linear molecules,
they reported a smaller decrease in the depolarization factor than would be
expected from a value of 1/4 for FQ' and concluded that the theory should be
modified by including the photon spin, A value of 1/4 for FQ is calculated
from Manneback'’s theory of diatomic molecules, The question concerning
the contribution of the ren;xaining rotational branches to the Q branch while
using the given narrow spectral slit widths has not been discussed by these
authors, Moreover, the data do not constitute quantitative measurements
because the exposure times varied widely,

A quantitative procedure for the comparison between pn(Q) and P
could prove to be a worthwhile project, Sources of error, such as the de-
pendence of instrument polarization on the spectral slit width, would have
to be taken into account, 36 Then, it might be possible to estimate the mo-
ments of inertia even when the rotational structure could otherwise not be
resolved,

—

Among the studies on the rotational broadening of scattered lines are
those by Weiler37 and Trumpy;38 the measurements were performed on
liquids, This makes a comparison with theory rather tenuous because the
premises of the theory applicable to free molecules break down, -Aside from
other factors causing line broadening, hindering of free rotation may induce
changes in the intensity distribution of Raman lines; further experiments are
required to clarify this point, The studies on liquids disclose a line broad-

ening which is more extensive than that of free molecules,

et o g
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Fig., 19, Contribution of the Q branch to the total intensity

of the quadrupole (anisotropic) scattering,
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Chapter 22, Fine Structure of the ?ca;tered Radiation.

Aside from the rotations of molecules and intermolecular effects,
there are other factors that contribute to the fine structure of the lines,

For instance, anharmonicity may cause frequency shifts of the vibra-
tional Raman lines, If a large number of molecules are in the excited state
at the temperature of the experiment, the corresponding transition fre-
quencies do not coincide and a splitting occurs, This is well demonstrated
by high-molecular-weight compounds at room temperature (kT = 200 cm—l),
Also, a broadening of the Raman lines has been observed for molecules hav -
ing a number of low frequencies, An abnormally large splitting of the weak
components of the COZ doublets has been observed,

In the case of structurally-similar weakly~coupled groups, the exist-
ence of many closely spaced frequencies gives rise to analogous effects,

The fine structure of the gspectrum of the hydrocarbons near 3000 cm_l (the
H atoms centribute largely to these vibrations) may be explained on this
basis,

Partially-free-rotating groups may also cause a broadening of Raman
lines, The vibrational frequencied of the molecules can undergo changes,
depending upon the orientation of tixe rotating groups., Bartholome and Teller
presumed that the large widths (10%) of the spectral bands of chain mole-
cules observed by Collines1 are the result of such a mechanism,

Isotope effects may also be reflected in structural changes of the lines,
For diatomic molecules, the {sotopic displacements are determined by mass
differencesj for polyatomic molecules, the relations are more complex., In
case of symmetric molecules, aside from frequency shifts, removal of de-
generaclies may take place due to a reduction in symmetry, ILangseth noticed

a fine structure in CCl, and attributed it to an isotopic effect. 2 According

to Gerlach, a weak cor:ponent of the 992-cm_1 line in benzene may also be
ascribed to an isotopic shift (a benzene ring containing a C13 atom). 3

In doubtful cases isotope and anharmonicity splittings could be distin-
guished by means of temperature studies of the intensities of the fine-
structure components, In addition, the Doppler effect may be mentioned
as a cause for line broadening, but, in contrast to the previous factors,
Doppler broadening is a function of the angle of obser\'/ation. For the half-
width of the Rayleigh line, we have

6= vy 2 oin 0/2 (2kT/me? m2)/2, (22.1)
The same expression applies to the Raman line, provided the Raman frequency

is small compred with v,
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Chapter 23, Scattering Spectra and Intermolecular Force Field.

A great number of papers on Raman spectra deal with interatomic
forces and their dependencé on chemical substitution, Because this problem
is concerned with the theory of molecular structure and only indirectly with
the theory of scattered radiation,i it will not be discussed in great detail, A
thorough treatment may be found in the book by Kohlrausch;l among the publi-
cations that have appeared since that time are those by Mecke, 2 Urey and
Bradley, 3 Redlich and co-workers, 4 and Bartholome and Teller. >

A brief outline is presented here. The force field of the molecule in
its equilibrium position is expressed in terms of the coefficients in the po-

tential-energy expression

!
|
Vo=1/2 5_ Z }aikrsxirxks, (23.1)

rs ik ¢

. .th : ; h .
where xir is the i component of the displacement of the 't atom from its
equilibrium position, The coefficients are not independent; rather, they are

—

related by

rs BT
ko T ki
This results in 3n(3n+1)/2 independent constants, where n refers to the num-
ber of atoms in the molecule, , In'the absence of an external field, the num-
ber of constants is reduced to (3n, - 6)(3n - 5)/2 which is further reduced by
any existing symmetry, The relations between the quantities aikrs and the

frequencies are obtained by introducing normal coordinates, IEquation (23.1)

takes the form
V = 1/2. Z 41r2v.2q.z.
j J )

Since, generally, there will be (3n - 6) frequencies, the force field cannot
be determined from the frequencies alonej (3n - 6)(3n - 7)/2 coefficients
will remain undetermined., L
The selection of the normal coordinate depends on the type of vibra-
tion, and the relative displacement of the atormms depends on the force field,
i, for a given symmetry type, there exists only one vibration, then it is

possible to establish the form of the vibration from its symmetry, By means
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of the frequencies, the force field can be eatablished for those molecules
only that possess a single vibration of a given vibration type. The COZ
molecule is one of the few of such examples, One can attempt a comparison
between observed and calculated frequencies, provided several force fields
are assumed, ? If improbable forces {such as interactions between distant
atoms) are ignored, the observed frequencies may be computed in different
ways, Therefore, any conclusions must be treated cautiously,

The same is true for assignments of frequencies to specific groups
or bonde. Many frequencies are altered but slightly by different chemical
substituents, although this may be due to the fact that vibrations of differ-
ent symmetry types do not interact, or due to specific dynamic conditionﬂ.8
These exist in some molecules while others may show a mixing of vibrations
accompanied by frequency shifts, Hence, these shifts cannot always be in-
terpreted as the result of changes in the force fleld,

The investigations of force constants can be carried out experimentally
by means of the fine structure of the vibrational lines in the Raman and
infrared spectra, making use of isotope effects and rotational structure of
the vibration bands. The isotopic shift of a vibration line is proportional to
the contribution of the isotopes to the total kinetic energy of the vibration, 9
Hence, the relative amplitudes of the atoms for specific vibrations can be
determined, and the vibration type forlthe known frequencies gives the re-
maining potential constants in Eq. (23.1). A closer examination of the iso~
tope effect can yield interesting results, Particularly, 1f sufficlent quantities
of the recently discovered HZ isotope were available, isotopically-substituted
molecules could be prepared and used to great advantage,

Furthermore, the interaction between vibration and rotation is a func-
tion of the interatomic force fleld, The characteristic quantities, gt, can be
derived from the rotational fine structure, yielding additional data, By

means of this method, a calculation of the force field has been successfully
10
8 4’
, which determine the potential-enerpgy distribu-

carried out for the molecule CH
The coefficients &
tilon, are associated with energy changes accompanying changes in the inter-
atomic distances., Hence, they characterize the stiffness of the bonding,
rather than the bonding energy, the latter being obtained from the dissocia-
tion energy, 1 The force constants give an indication of the nature of the
chemical bonding. A purely polar bond gives rise to a central force field,
while large ionic polarizabilities lead to deviations from such a force field,
In contrast, homopolar bonds imply directional forces. The relation between
force field and the nature of bonding constitutes one of the many unsolved

problems of quantum chemistry,
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Chapter 24. Experimental Results and the Polarizability ’I'ensor.1

The theory outlined above demonstrates that the scattering properties
of a molecule are characterized by the ﬁsolar‘izability tensor and its deriva-
tives in terms of the normal coordina'tes.

A specific knowledge of these tensors is not essential for the deriva-
tion of selection rules, polarization rules, and rotational structure. These
properties can be derived from the symmetry of the system, and from a
qualitative inspection the low intensities of the overtones can be predicted,
However, symmetry considerations are inadequate fo¥ atheoretical under-
standing of the absolute intensity, for intensity distributions in the vibra-
tional and Rayleigh lines, as well as for the depolarigation factors of the
Rayleigh and totally symmetric Raman lines of noncubic molecules, These
problems require rigorous calculations involving the polarizability tensor,

a task that has not yet been accomplished, Yet these tensors can be estimated
empirically with the aid of intensity and polarization mmeasurements, e A few
experimental results are summarized here, and utilized in tensors calcula-

tions. Also, an attempt is being made to offer a theoretical interpretation,

l. Experimental Data,

The majority of these studies concerns the depolarization of the Ray-
leigh line, 3 Table XVII presents the depo”larization factors of the Rayleigh
lines of several molecules, The measurements on gases were performed
with instruments of insufficient spectral resolution, Although the vibrational
Raman lines were observed, their intensities were too faint to exert a marked
influence on the value of P

The first three columns show results obtained by Cabannes, 4 Rao, 5
and Partharasathy, 6 which are belleved to be the most accurate ones avail-
able at this time, Cabannes7 published a summary and a discussion of addi-
tional measurements,

The fourth column lists the most probable values for the depolarization
factors; the original data given by Cabhannes were slightly changed in view of
the later data by Partharasathy, and question marks are affixed wherever
major discrepancies appear,

One should consult the examples cited in the tables of Chapter 19 to
obtain an estimate of the magnitude of the depolarization factors for totally
symmetric vibrations, The contribution of the vibrational Raman effect to

the total has been largely investigated for gaseous systems and is essentially

e ——
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Table XVII
Depolarization (100 pn) of the Total Scattering

of Some Molecules in the Gaseous State,

Cabannes Rao Partharasathy Most Probable
Values

2 3.75 3.57 3.55 3.6
O2 6. 45 6,42 6.50 6.5
Cl2 - 4,37 4,07 4,2
HZ 2.2 2,74 2,57 2,6
HCL - 0.66 0. 71 0.7 |
HBr - - 0.84 0.8
HI - - 1,27 1,3
CO 1.7 - 1,30 1,5
CO2 9.8 9.7 9.72 9.7
C:S2 - 11,1 - 11,1
NZO 12,2 12,0 12,47 12.5
SOZ - 4.1 3.11 3.6 (7)
HZO - 1.'99 - 2,0
HZS - - 0.93 0.9
NH3 - 1, 31 0.98 I.1(?)
CCl4 0,77 0. 50 0.62 ?
CH4 1.5 - .12 ?
('2.Hé 1.6 - 1. 30 1.4 (?)
CZ.H4 - - 2.92 2.9
CZHZ - - 4.52 -

4,20 4.2 - 4, 45
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8 .
of qualitative nature,  Studies on diatomic and triatomic molecules reveal
that the Raman line intensity i8 of the order of a few thousands of the total
radiation, ? Similar results have been recorded for liquids, whose contribu-

1
10, 11 The coherent part of the

tion is considerably higher than that of gases,
Rayleigh scattering i3 reduced by interference effects of the molecular scat-
tering. Liquid data may be converted to comparable gas data by substituting
the empirical relation between the scattering intensities of gases and liquids in
the expression for the total scattering. The vibrational-line intensities are
assumed to be proportional to the density, although the intensity distribution
in the vibrational spectrum has not been investigated sufficiently, 12 Most
papers are concerned with intensity relations between Stokes and anti-Stokes
lines {see Chapter 25), while accurate relative intensities of vibrational lines
are lacking, Values reported by Dawe and Carrelli, and West show wide
discrepancies which can be attributed to inconsistent measurements of the
variable line widths,

Measurements of absolute intensities could aid in the determination of
the absolute scattering cross sections and temstors.l3 However, more ac -

curacy may be attained by calculating average polarizabilities from refrac-

tive indices,

2. Principal Axes and Numerical Values of the Polarizability Tensor,

We shall discuss next the calculation of the principal axes of the tensor
o and (ana/aq“), from the depolarization factors of the Rayleigh and totally
symmetric Raman lines, regpectively., Only axially-symmetric systems
will be considered, so that the orientation of the axes is determined by the
symmetry relation C, = - cy.

According to (15.10) and {15,10a), we have

a=1/3 (az + Zax).

If the principal values of the tengors a and (8a/9q) are described by c, and
c_= Cy, then, for the Rayleigh and Raman lines, it follows from (15.11) that

X
2
) (1 —cx/cz)
Pn” v (24.1a)
2+c e, +9/2(c [e))
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Flg. 20. Depolarization factor plotted against the ratio
of tensor components for axial symmetry,

Figure 20 shows a plot of the ratio of the principal axes versus the depolariza-
tion factor; the quantity cx/cy is plotted on a logarithmic scele along the
ordinatae, Theo left curve corresponds to positive, the right to negative values
of cx/c . For the Rayleigh line we are resiricted to the left curve since the
diagonal elemeonts of the tensor are necessarily positive (pn <1/2)., There
are two possible values of cx/c for each one of the depolarization factors,
One value 1o obtained for p,, Breater than 2/9 of a Rayleigh line as the right
curve ig absent. The polarizability ellipsoid will be an oblate rotation ellips-
oid,

If the depolarization facter of a Raman line is close to 2/9 or 1/2, an
unoquivocal assignment is possible. Omne ratio will yield a value that is
excluded on physical grounds, If Pn is emaller than 2/9, the polarizability
for the particular vibration changes along both principal directions in the
samo sencoj if o is greater than 1/2, the principal values change in the op-
posite sense, Tho former is oboerved for the totally symmetric vibration
992 cm-l of benzene (Pn = 0,07), both possibilities exinst for the intermediate

values of p n°
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The depolarization factor is insensitive to small deviations from iso-
tropy, as may be seen from Fig, 20, A 1% depolarization may correspond
to a 30% difference in the values of the principal tensor components, On the
othex: hand, isotropic molecules may exhibit an apparent anisotropy due to
impurities or incomplete correction for converging incident light,

The approximate relation between the depolarization of the Rayleigh
line and the Kerr constant14 may be used in deducing ambiguous cases. For
gases of moderate density (n - 1 <<1), the Kerr constant {sce definition in’

the paper by Debye-Sack, Eq, (140)) is
Ke = 31rN(®1 + @2). (24.1)

where N refers to the number of molecules per cublc centimeter, Accord-

ing to Eq. (136) of Debye-Sack, @1 and 82 are given by the following expres-

sions:
- =1 .
O = [fog = ap)Byy = Bp) + (ay = ag)Byy = Byg) + (ag = 0By - o))

(24, 2)

_ 1 2 2 2 2 2 2
S L T R L R N L R
where by denotes the components of the dipole moment, a the diagonal ele-
ments of the optical polarizability tensor, and Bii the components of the
statistical polarizability tensor in the directions of a;. The directions of
the principal axes of the two tensors coincide when the molecule possesses
" rhomblc or higher symmetry, If dispersion is neglected and Bii is equal to
Qs according to (24,2}, (15.10a), and (15.11), we obtain

2 2 p

®, =Y =22 n_, (24. 3)
45KT KT 6 - 7p_

Expressing the mean value of the polarizability in terms of the refractive

index (n - 1) = 2¢Na, we obtain,

2 P .
_{n -1} n Sy
@1 = s R (2-1. 3a)
2kTr N 6 - 7pn

For nonpol;u- cornp()undn having @, = 0, the following owpr eeetbooy ol
y
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27k T N 6 -ip,

My

. (24, 4)

Attempts have been made to in:}prove the accuracy of (24. 3a) and (24, 4) by
replacing (n = 1)2 with (n - 1)(r} - 1) The quantity n_ is identical with the
statistical dielectric constant for nonpolar compounds; for polar substances
it may be determined by extrapolating the dielectric constdant to T = oo, This
procedure assumes that the cha{nge of each polarizability component is pro-
portional to the dispersion, whegreas, generally, no reason for such an assump-
tion exists, -

The difference between statistical and optical polarizabilities arises
from the effects of the ultraviolet (electronic polarization) and infrared (atomic
polarization) absorptions, The former lowers the statistical polarizability
components relative to the opti'cal ones, while the latter raises them. The
above assumptions are tenable.if the ultraviolet absorptions affected the op-
tical and statistical polarizabilities equally, percentage-wise,and if the ab-
sorption regions could be repla'ced by sharp single bands, However, this
usually does not occur. The contribution of the infrared absorptions to the
individual statistical polarizabtlity components is independent of the magni-
tude of these components} they are determined essentially by the ultraviolet
transitions, provided the dispersion is assumed to be small, 15 Since there
is no theoretical basis for suth a functional dependence, expressions (24.3a)
and (24.4) should be employed "directly. The experimental and calculated
data differ, particularly in the. case of molecules having small depolarization
factors due to the inaccuracy of the Py data. For molecules whose depolar-
ization factors are higher, such as for COZ and CSZ' the magnitude of the
derivatives seems to fall outside the experimental error.

The situation is simplified considerably for systems having axial sym-

metry, thus permitting a more rigorous treatment, One obtains:

2wN H._E_
K = (a =-a ) + -B.)
¢ 1skT %2 ¥ kT P ™ Px
5p 1/’2 2
K=:tn'1( Dy B—r g -8 s
e z x
5T 6 - 7pn kT

where the signs + and - apply to (o.z >°‘x) and (o.Z < ax), respectively, Here,

B =p, =0, ax=ay, andpx=py.

X y
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Since the dipole and anisotropic parts of Ke depend differently on the
temperature, (az - ax) and (@Z - px) may, in principle, be determined from
Kerr constants of dipolar molecules, With the aid of additional data on n and
0 the optical and statistical polarizability ellipsoids can be evaluated
uniquely, while the value for p, Can serve as a check, Very few tempera-
ture studies on the Kerr effects have been reported, Since the dipole part is
greater than the anisotropic part, the sign of the Kerr constant is fixed by
the quantity (az - o.x). Hence, a knowledge of the Kerr constant removes the
ambiguity in the determination of the principal axes from the depolarization
factor when P is less than 2/9 (:see Fig, 20). 16 In this manner, the polar-
izability ellipsoid for HCI, CH3C1 was found to be prolate, and that for CHC13
oblate, 17 In the absence of axial symmetry, the polarizahbility ellipsoid

cannot be established unequivocally without specific assumptions,

3. Theoretical Computations of the Polarizability Tensor and its Dependence
on Molecular Structure,
The exact calculation of the atomic polarizabllity tensor has been
successful for the most simple cases only (see Chapter 12). The problem
is more complicated for molecules and has not yet been accomplished satis-
factorily., Unsbld attempted an evaluation of the mean value of the polariz-
abllity of HZ+'19

as a function of its distance from the H atom, by meana of perturbation cal-

He treated the effect of a point charge on the polarizahility

culation, Although quantitative agreement i{s not expected for distances of
the order of the equilibrium distance, this method demonstrates qualitatively
the decrease in polarizability of a negative charge cloud when penetrated by
an H nucleus (or by a small cation), This effect should be of particular im-
portance for the polarizability of alkall halides, The treatment could be im-
proved by including exchange effects, which were neglected by Unsbld,

A computaticn of the polarizability ellipsoid of the HZ molecule was
recently attempted by Mrowka, 20 He coneldered discrete intermediate
states only, without properly orthogonalizing the eigenfunctions, For the
hydrogen atom, half of the f-values are in the continuum, and for the hydro-
gen molecule, which agssumes a position between hydrogen and helium, the
effect of the continuurn is even more pronounced. Therefore, the agreement
between the values calculated by Mrowka and the empirical data must be
fortuitous. An accurate treatment of HZ+ and HZ would be of considerable
interest since quantitative, relliable results, although laborious, are feasible

with the proper mathematical apparatus,
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For the more complex molecules the difficulties are mounting, so that
the problem has to be reduced to an evaluation of the molecular polarizability
v,.nsor from atomic, ionic, and bond polarizabilities, An attempt was made
by Silberstein who proposed the theory of the induced moments., The mole-
cule is assumed to be Compo s¢ d of isotropic polarizable ions and the field
affecting the individual ions is'regarded as made up of the external field and
the homogenous fields of the moments induced in the adjacent molecules (see
the article by Debye-Sack), Then, one .can derive an anisotropic molecular
polarizability which depends on the position of the nuclei, The induced mo-
ments differ for the various ions because of thelr configurations, interatomic
distances, and orientation of the molecules with respect to the external field,
From these premises, the polarizability ellipsoid of molecules, the refrac-
tive indices, and the depolarization of the Rayleigh scattering were calculated
using the ionic indices and distances, 21 Cabannes computed the classical
limiting case of the Raman effect of a diatomic molecule for such a model, 22
Furthermore, the quantities that determine the intensity and polarization of
the Raman effect of such a m3c>de1 may be obtained simply by differentiating
the expression given by Debye-Sack (Handbook, VI, Part 2, p. 198). 23

Since the idealized model of Silberstein is not supposed to yield quanti-
tative, accurate results, molecules have to be investigated that warrant its
qualitative application, It is necesgsary to restrict this model to heteropolar
molecules because only these systems may be approximated by separated
ions. For other types of molecules--for instance, CCl4 and homopolar mole-
cules--the penetration of the charge cloud and exchange effects are of major
importance, If the ionic polarizabilities of heteropolar molecules are small
compared with the ionic volu"_mes, deviations from the assumed homogeneity
of the induced dipole fields do not invalidate the results, The general appli-
cation of the Silberstein model to organize molecules is theoretically unjusti-
fiable on a qualitative basis,

The following factors are usually cited in favor of the theory: 1) It
yields small values for the depolarization factor of the Rayleigh scattering,
in agreement with experimental results (highest depolarization factor p = 0,12
{or NZO); theory predicts a maximum value of 0,5, 2) A depolarization
factor independent of the chain length is predicted and substantiated by investi-
gations on long-chain hydrocarbons. In addition, the predicted direction of
the axis of maximum polarizability agrees with the results obtained from the

Kerr effect for simple systems., 3) The mean polarizablility is not a function
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of the interionic distances, The individual principal components could vary
considerably, leaving the mean value unchanged. This would explain the ob-
served additivity of the ionic refractive indices,

It should be mentioned that factors 1) and 2) are of such general char-
acter that they may be derived from different premises, rather than serve
as confirmation of the Silberstein model, Large polarization factors for the
Rayleligh scattering are associated with maximum ratios of the principal
axes of the polarizability, but they are most improbable. The fact that the
depolarization factor is independent of the chain length is due to the rapid
decrease in interatomic effects with increasing distance. A similar argu-
ment applies to the direction of the axis of maximum polarizability in the
few examples that have been studied experimentally,

With regard to the third factor, the very argument gives rise to the
complete brealkdown of the depolarirzation calculations for totally symmetric
Raman lines, 24 The second-order dependence of the trace on the interatomic
distances results in large depolarization factors for totally symmetric Ra‘man
lines, This is in sharp contrast to the low values usually observed, Cabannes
and Rousset computed the value Py = 0.8, for the totally symmetric vibra-
tional line of CO3—, whereas the value observed was 0, 2.

In view of the need for a practical and qualitative theory, it might be
of interest to consider a.homopolar, rather than heteropolar, molecule hav-
ing individual bonds with associated anisotropic polarizabilities, The inter-
action of these bonds then must be treated according to the theory of induced
moments, Such an approach appears promising and has been attempted by
Otterbein, and Stuart and Volkman, 25

For a quantum-mechanical model, the laws governing the bond polar-
izability ellipsoids must be investigated, as well as the changes upon stretceh-
ing of the bonds, In terms of quantum mechanics, the bonds are proups ol
electrons which hold the molecule together, A closer study of the motion of
the electrons in the two-center problem according to Hund is indicated. The
higher levels, which are occupied differently for the various homopolar
bonds (o, w, single, double, etc,), should be examined also. For a simple
m-bond, the axis of maximum polarizability is expected to be along the va-
lence-bond direction, I'or slight perturbations due to adjacent atoms, the

26

rotational symmetry is believed to be preserved.
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Without further investigations of this type, a few qualitative statements
can be made, For example,l Rayleigh lines of molecules like HZS and NH3
which are fairly similar to rare gases, and those of alkall halides are ex-
pected to possess a small depolarization factor., This has been confirmed
experimentally {see Table XVII). 21 Also, it appears reasonable that the in-
tensity of the Raman effect should be a function of the type of chemical bond -
ing. In the case of heteropolar bonds, each electron is associated with an
atom (ion) and is predominantly affected by one nucleus; hence, the polariz-
ability will be less sensitive to interatomic distances than for homopolar
bonds, Here, the valence electrons are shared between two atoms so that
the electrone will be in the field of two nuclei, making the polarizability
greatly dependent on changes in the interatomic distances., Molecules thar
differ only in their type of bonding are expected to show more intense dis-
placed scattered radiation when they are homopolar than when heteropolar, 28
a fact substantiated by experiment, 29 Recently, an attempt was made to
utilize the intensity of the Raman effect as a direct measure of the bonding

30 However, there are additional factors that

character of the molecule,
can affect the intensity since it varies with the type of vibration, even in the
case of polarizabilities that have the same dependence on atomic displace-
ments. Aside from symmetry and pseudosymmetry, the force field of the
molecule and the masses of the vibrating atoms (larger zero-point amplitudes
of the llght H atoms) play an important role,

!
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Chapter 25, Phenomena Excluded by the Polarizability Theory,

l. Scattering Near the Region of Resonance,

The polarizability theory is valid provided the interval between incident
and absorption frequency is large compared with the aplitting of the elec~
tronic levels induced by nuclear vibrations. Moreover, it is assumeqd that the
absorption regions associated with each electronic transition can be replaced
by their center of gravity,

If the incident frequency is near an absorption band, the first process
to occur is the one for which the frequency intexval is small in relation to
the width of the vibrational structure of the electronic band, but large rela-
tive to the width of the rotational structure of the individual electronic vibra-
tional bands, Then the scattered radiation can no longer be expressed in

terms of the dependence of the polarizability of the rigid molecule on the
nuclear displacements. Since rotations may be neglected initially, the scat-
tering amplitudes of a vibrating, non-rotating molecule are investigated.

The rotational structure of the scattered lines may be obtained subsequently -~
as in the polarizability theory--by forming the matrix elements of the scat-
tering amplitudes, using the rotational eigenfunctions, The amplitudes will
depend on the spatial orientation of the molecules,

For the calculation of the scattering amplitudes, the expressions for
the spontaneous transition amplitudes of the electronic vibrational transi-
tions are inserted into the general equation for the scattering tensor, (5.2),
The spontaneous transition amplitudes are derived by considering the trans-~

ition amplitudes for each electronic transition as functions of the nuclear
displacements,

8M "

¢ o o

OquUnv'

Ov 0
M0V = )y [ U, U da Z(
nv n ‘0 Ov Yny Bq }0
(25.1)
where UOV denotes the vibrational function of the electronic ground state,

and U_ that of the excited state, When (25.1) is substituted into Eq. (15, 2),
the lalt]t‘er reduces to the expressions of the polarizability theory, as long as
the difference between the resonance denominators for the various vibrational
transitions belonging to the game electronic state can be neglected, The fre-
quency dependence of the scattering amplitude stems from the fact that the

contribution of the individual electronic states to the scattering amplitude is

a function of incident frequency.

i R i sk i . e ot
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In addition, the vibrational structure of the excited electronic levels

can appreciably alter the relative intensities of the scattered radiation, Out-

side the region of resonance, these effects including terms of the oxder of (q,)n
J

and hlgher for a transition A.vj = n compensate each other, If the incident
frequency increases to the extent that the Yesonance denominators for the
vibrational intermediate levels differ markedly, this compensation no longer
occurs., Then, the intensity distribution, where the intensity decreases

rapidly with increasing vibrational quanturm numbers, becomes a ¥Franck-

Condon intensity distribution of the resonance spectrum., Here, large changes

in the vibrational gquantum numbers also give rise to intense lines.  Simul-

taneously, the selection rules based on the power-series expansion of the

normal coordinates (they are referred to as approximate rules in Chapter 18),

rather than on general symmetry properties, lose their validity., Conse-
guently, fundamentals of degenerate vibrations can give rise to isotropic

gcattering, thereby lowering the depolarization factor of the corresponding

lines,

As was mentioned in Chapter 14, the scattering tensor outside the scope

of the polarizability theory may contain an antisymmetric part, provided the

symmetry condition is fulfilled, (This is not the case for diatomic molecules.)

This condition leads to the appearance of magnetic dipole scattering which
causes an increase in the depolarization factor, deviations from the rela-
tions given by (15.3), and new lines if the corresponding transition is for -
bidden for isotropic and quadrupole scatterings. The latter is demonstrated
by the AZ

remains symmetric in the approximations for which the polarizability theory

fundamental of the Cf{v symmetry group. The scattering tensor

is no longer applicable, It becomes symmetric again when the deviation in
{25.1) is restricted to the constant term, which, in the immediate neighbor -
hocd of the resonance, 1s responsible for the major part of the scattered
radiatlon, The cifects described here are of secondary importance because
of the reasons cited,

The formulae in Chapter 21 apply to the rotational structure of the
guadrupole part. If the vibrational scattering tensor possesses an antisym-
metric term, its dependence on the orlentation of the molecule must be ex-
amined in the same manner as in the case of the symmetric part discussed
in Chapter 21. Since an antisymmetric tensor transforms like an axial vec-
tor, and since there is no difference between ioola.r and axial vectors under

spatial rotations, the relative intensities of the rotational lines are identical

with those of infrared bands and may be described by the H8nl-London formulae,

2
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The frequency dependence of the scattering amplitude in this region is
rather complex, The direction cannot be'given unambiguously,.because the
numerators of the individual terms in the sum of E.q. (5.2) possess different
signs. If the resonance frequencles are higher than the incident frequencies,
as is true in most experiments, it is possible that initially the scattering
amplitude decreases with increasing incident frequency. 3 This possibility
does not arise when the scattered radiation is coherent, and when, in the
cage that the incldent frequency is much different from the resonance fre-
quency, the electronic states are approximated by a center of gravity, For
coherent scattering, the denominators in Eq, (5.2) must be positive when
the axes of the polarizability are fixed by symmetry.

The frequency dependence of the Rayleigh scattering has not been
studied experimentally; however, some indications can be obtained from
atmospheric-extinction measurements, 4 Daure5 and Sirkar6 examined the
frequency dependence of the displaced and undisplaced scattered radiation
for a set of organic liquids, Direct measurements of the frequency depend-

ence of vibration lines for organic molecules--mostly for liquids--have been-

reported by Ornstein and Rekveld, 7 Sirkar, 8 Werth, ? and LEllenberger, 10

Table XVIII presents data obtained by these authors for two Stokes
lines of CCl4. The intensities are referred to the Hg 5461-A exciting line,
Sirkar, who used the Hyg 4358-A line, achieved a reduction by relating his
4358 values to the average of those by Ornstein-Rekveld and Werth, Ellen-
berger’s results are systematically higher than those of the other authors.
It may be seen that for the 312-cm"1 line, the v'4 law is well observed in the
visible region, while for the 459-cm ™} line, deviations are already apparent
in the visible range, The question whether these are real or due to experi-
mental error will not be discussed here, although the author belleves the
latter to be more likely. In the ultraviolet region there i{s a considerable
increase in I/v‘4 for both lines, indicating that the scattering amplitude is
a function of frequency.

Analogous data are avallable for other substances.11 The polarizability
theory is not applicable to these studies; they can be interpreted in terms of

the frequency dependence of the contributions of the electronic state, but the

effect of the vibrational structure of the electronic states is not well understood.

Little experimental evidence for the frequency dependence of the de-

polarization factor js avallables none has been observed in the visible range,

B

i S
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Table XVIII
Frequency Dependence of the Scattering Intensity of the

CCl4 Vibrational Lines 312 em ™ and 459 cm—l,

o IO = A s po s y et prie Trs Py e o4

- ) 4
312 cm ™ 1 /vt

Hg v’4 O.-R. W, E, S. O.-R. W, E. S, Average
5461 1 1 1 1 - 1 1 1 - 1
4358 2,44 2,47 2.48 3,41 (2.47) 1,01 1,01 1,40 (1,01) 1.01

4047 3.27 3.33 3,26 5,26 3.65 1,02 1,00 1,00 1,14 1.05

3132 9.01 15,1 1.68 1.68
302210, 490 22.4 2,15 2.15
459 cm ™

5461 1 1 1 1 - 1 1 1 - 1

4358 2.43 2.14 2,15 3,50 (2.14) 0.87 0.88 1,48 0.87 0.87
4047 3.26 2.94 3,01 5,56 3,21 0.90 0,92 1.71 0.98 0.93-
3132 9.00 13.8 1.53 1,53
302210, 28 20,6 2. 00 2,00

ey T S e e et ik oot 1o & =Dy T,

Krishnan.and Sarkar, studying benzene vapor in the ultraviolet, noted a
slight increase in the depolarization factor of the total radiation.}L3 Theoret-
ically, such studies are just as illuminating as those of intensities, Manne-
back pointed out that, as a result of the selection rule for diatomic molecules
(in the © -ground state), the © — % transitions contribute to the parallel com-~
ponent of the molecule-fixed scattering tensor, while only the £ - II transi-
tions contribute to the perpendicular component, 14 The depolarization factor
Py approaches 1/2 for a T intermediate state and 2/9 for a II intermediate
state if the incident frequency coincides with a region where the contribution
of a single electronic state to the scattering amplitude predominates but’
where the rotational structure of the vibration levels does not affect it,
Intensity ratios of Stokes to anti-Stokes lines have been reported for
the visible region only, Dzuu‘e15 measured chloro compounds; Ornstein and
Rekveld16 and Six‘karl7 studied CC14. The data by Sirkar agree well with ex-
pression (15.2) which is derived from the polarizability theory and from the
u’4 law (see Chapter 8), whereas those by Ornstein and Rekveld deviate con-

siderably,
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Rotation Resonance, 'If the incident frequency is so close to the reso-
nance region as to be comparable to the rotational frequency, further changes
take place in the scattering spectrum. The vibrations and rotations can no
longer be treated separately. The symmetry properties of the total eigenfunc-
tion determining the selection rules will give rise to additional vibrational
bands. In the case of diatomic molecules, magnetic dipole scattering will ap-
pear and the intensity distribution in the rotational spectrum will be altered
basically: from the distribution discussed in Chapter 21 and from the one
formulated by H&nl-London, broadening of the sharp resonance develops grad-
uvally. The total rotational structure is reduced to a few lines and to a doublet
in the case of diatomic molecules. Segré€ attempted to calculate the beginning

18,19 Rasetti reported an experi-

of this transition for a diatomic molecule,
mental study of such a transition.zo The depolarization factor indicates a
strong dispersion in the transition region for the line AJ = 0, £ 1, remaining
independent of the incident frequency for AJ =+ 2. In the latter instance only
quadrupole scattering can occur, giving a value for p of 3/4 (see Table I).

For the sharp resonance case, the depolarization factor ig a function of-
the J value of the initial, intermediate, and final states, as discussed in Chap-
ter 7, The resonance spectrum of the iodine vapor shows a doublet AJ = 0, +2
and AJ = 0, - 2.21 The compoaents AJ =+ 2 have depolarization factors p =3/4;
for the components AJ = 0, the intermediate level J+1 has {doublet AJ=0, +2):

p =172 30T+ 7 (25. 2a)
47% + 8T + 5

and the intermediate level J - 1 {doublet AJ = 0, - 2):

p =12 HIN6T - 1) (25. 2b)
477 + 1

Both expressions converge to p = 3/4 for high J values; in that case, the po-
larization of the two doublet components is practically identical, This has
been confirmed by polarization measurements of Wood, who found p = 0,71 for
both COmponentB.22 However, the reversal constant differs significantly, For
AJ =0, P =6, and for terms analogous to {25.2) and high values of J, P con-
verges to P = 1/6. Hence, for circularly-polarized incident light, the compo-
nent AJ = 2 shows reversal of polarization, while component AJ = 0 does not,

The effect of nuclear spin of iodine on these processes will not be treated here.23
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2. Degenerate Electronic Ground State,

The general relations have already been presented in Chapter 14. As
an example, we choose a diatomic molecule in a 111 ground state, Analogous
to Eqe. (18.11) and (21, 8), the selection rules are

o

AN =N+, (25. 3)

where A denotes the angular momentum about the boud axis and is equal to
+ 1 for a II state. The coherent scattering of rigid molecules (AA = 0), is
described by the axially-symmetric polarizability tensor A' + p! = 0, The in-
coherent scattering of the undisplaced radiation is associated with the {rans~
itions A = +1 = A= -1, corresponding to the tensor X' + p' = 3(N' + p! = - 2).

For nonrigid nuclei, the intensity of the scattering line is determined .
by the dependence of the two tensors on the nuclear positions. It is necessary
to set up the matrix elements of the two tensors from the nuclear elgenfunc-
tions, Since the tensor ' 4+ u? = 0 possesses also an antisymmetric part (the
component Cf’-l')' magnetic dipole scattering may appear.

The intensity of the rotational structure of the Rayleigh and vibrational
lines can be evaluated by replacing K andK', in Eq. (21.11} and in Table XV,
by A and A' (the electronic angular momenta about the figure axis), respectively,
Thie results in a rotational structure containing all branches (AJ =0, = 1, % 2).
Transitions AA=0, AJ=0 give rise to isotropic scattering, and transitions
AA=0, AJ=0, = 1, to magnetic dipole scattering whose intensity distribution
is represented by the HYnl-London expression, These spectra exhibit P and
R branches as well as magnetic dipole scattering, in contrast to those of di~
atomic molecules having nondegenerate electronic ground states,

The A-doubling affects the scattering spectrum also., Each rotational
state splits into two substates, one even and one odd state {see Krdnig, Chapters
18 and 20). The energetically-higher state, for consecutive values of J, is

alternatively even and odd, 24

Only even (or odd) states combine in the scat:-
tering spectrum since the symmetry character alternates with J, causing a
splitting of the rotational lines by an amouni equal fo twice the A-doubling
for transitions involving AJ = =z 1. There is no splitting for AJ =0, £+ 2. 25
The ground state 2II of NO can be treated analogously. Two types of
Hund's interactions, a and bymay be distinguished (see Krdnig, Chapter 14).
Type a involves the coupling of spin ¥ with the molecular bond, The spin

combines with the orbital angular momentum A to formm the total angular

-
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momentum @ about the molecular axis, The 2II state gplits into =tates 2113 5

[

and 2111/2 and the selection rule AQ = \' + u! applies; moreover, AA = \' + !
because of the small spin-orbital interaction,

Therefore, the following transitions are possible: @ : + 1/2 - + 1/2;
% 3/2 -+ 3/2; £ 1/2 = F 3/2, The first four transitions correspond to the
undisplaced scattered radiation, the latter two represent radiation displaced
by the doublet splitting. The rotational structure is identical with that of
the 1II state, 26 except that here the transitions AQ = 0 and AQ = + 2 are ac~
companied by separate lines. For the 111 gstate, lines corresponding to the
transitions AA = 0 and AA =+ 2 overlap. For AQ = 0 (undisplaced scattered
radiation, i.e., vibrational line), one obtains AJ =0, + 1, x 2, and because
of the low  value, weak AJ = + ] branches, As in the preceding example,
isotropic scattering occurs when AJ = 0, and magnetic dipole scattering when
AT =0, £ 1. When AQ = 2 (doublet splitting, or doublet splitting plus scat-
tered displaced radiation corresponding to the vibrational frequency), quad-
rupole scattering arises, whose intensity is expressed by Eq. (21.1l) upon re-
placing K by . The intensities of all branches are of the same order of
magnitude, The band corresponding to AQ = 2 has a depolarization, P, = 6/7.

Type b invelves the interaction of spin with the angular momentum of
the molecular rotation K, giving the total angular momentum J. 27 The en-
ergy depends on K only, There are two term systems, which differ by 2BJ
(see Kridnig, Chapter 17) but which do not combine because Ax = 0. As A
iz a quantum number, the above selection rule holds and the spectrum is
analogous to that of the 1II state,

The rules discussed in types a and b no'longer apply to tramsitions in
cases betwaen these two because of the selection rule AA = \' + p'. The re-
strictions imposed on the combinations of the A-doubling remain valid, The
intensity distribution of the rotational lines in this Intermediate region can
be evaluated with the aid of a perturbation calculation,

The NO molecule, which presently constitutes the only example of a
stable diatomlc molecule having a degenerate electronic ground state, dis~
plays a term system closely resembling type a, Rasetti was able to identify,
in the scattering spectrum, the Q-branch of the two transitions AQ = :|: 2

(2'111 > z:ZII9 2) and was able to partially resolve the rotational structure
£ <

of the line AQ = 0, 28
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Conclusion

Originally, it was planned to include another chapter on the scattering
properties of aggregated systems such as gases, liquids, and solidz, To
avoid an undue delay in the publication, however, the author decided to ocmit
this chapter.

A detailed, excellent account of the classical theory of the scattering
of gases and liquids has been presented by Cabannes.l The scattering by
crystals and the important new investigations of the fine structure of Rayleigh
lines arising from liquids and crystals have not been summarized, Although
the most interesting problems in the theory of scattered radiation concern
this aspect, the material discussed in the preceding article represents a
self -contained treatment., It constitutes the basis for the study of scatter -
ing phenomena of coherent systems, The author hopes to have the oppor-

tunity of incorporating the third part into the next edition of this Handbook, ‘
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